Step |
Hyp |
Ref |
Expression |
1 |
|
xmeter.1 |
⊢ ∼ = ( ◡ 𝐷 “ ℝ ) |
2 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ℝ ) ⊆ dom 𝐷 |
3 |
1 2
|
eqsstri |
⊢ ∼ ⊆ dom 𝐷 |
4 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
5 |
3 4
|
fssdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∼ ⊆ ( 𝑋 × 𝑋 ) ) |
6 |
|
relxp |
⊢ Rel ( 𝑋 × 𝑋 ) |
7 |
|
relss |
⊢ ( ∼ ⊆ ( 𝑋 × 𝑋 ) → ( Rel ( 𝑋 × 𝑋 ) → Rel ∼ ) ) |
8 |
5 6 7
|
mpisyl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → Rel ∼ ) |
9 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) ) |
10 |
9
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) |
11 |
10
|
simp2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∈ 𝑋 ) |
12 |
10
|
simp1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
13 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
14 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
15 |
13 12 11 14
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
16 |
10
|
simp3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
17 |
15 16
|
eqeltrrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) |
18 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) ) ) |
20 |
11 12 17 19
|
mpbir3and |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∼ 𝑥 ) |
21 |
12
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
22 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∼ 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) |
24 |
23
|
adantrl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) |
25 |
24
|
simp2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
26 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
27 |
16
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
28 |
24
|
simp3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) |
29 |
|
rexadd |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) = ( ( 𝑥 𝐷 𝑦 ) + ( 𝑦 𝐷 𝑧 ) ) ) |
30 |
|
readdcl |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) + ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
31 |
29 30
|
eqeltrd |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
32 |
27 28 31
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
33 |
11
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
34 |
|
xmettri |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
35 |
26 21 25 33 34
|
syl13anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
36 |
|
xmetlecl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ∧ ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) |
37 |
26 21 25 32 35 36
|
syl122anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) |
38 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) ) ) |
40 |
21 25 37 39
|
mpbir3and |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∼ 𝑧 ) |
41 |
|
xmet0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) = 0 ) |
42 |
|
0re |
⊢ 0 ∈ ℝ |
43 |
41 42
|
eqeltrdi |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) |
44 |
43
|
ex |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) |
45 |
44
|
pm4.71rd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) ) |
46 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) |
47 |
|
anidm |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) |
48 |
47
|
anbi2ci |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
49 |
46 48
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
50 |
45 49
|
bitr4di |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) ) |
51 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) ) |
52 |
50 51
|
bitr4d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥 ) ) |
53 |
8 20 40 52
|
iserd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∼ Er 𝑋 ) |