| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmeter.1 |
⊢ ∼ = ( ◡ 𝐷 “ ℝ ) |
| 2 |
|
cnvimass |
⊢ ( ◡ 𝐷 “ ℝ ) ⊆ dom 𝐷 |
| 3 |
1 2
|
eqsstri |
⊢ ∼ ⊆ dom 𝐷 |
| 4 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 5 |
3 4
|
fssdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∼ ⊆ ( 𝑋 × 𝑋 ) ) |
| 6 |
|
relxp |
⊢ Rel ( 𝑋 × 𝑋 ) |
| 7 |
|
relss |
⊢ ( ∼ ⊆ ( 𝑋 × 𝑋 ) → ( Rel ( 𝑋 × 𝑋 ) → Rel ∼ ) ) |
| 8 |
5 6 7
|
mpisyl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → Rel ∼ ) |
| 9 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) ) |
| 10 |
9
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) ) |
| 11 |
10
|
simp2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∈ 𝑋 ) |
| 12 |
10
|
simp1d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑥 ∈ 𝑋 ) |
| 13 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 14 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 15 |
13 12 11 14
|
syl3anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
| 16 |
10
|
simp3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 17 |
15 16
|
eqeltrrd |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) |
| 18 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → ( 𝑦 ∼ 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 20 |
11 12 17 19
|
mpbir3and |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∼ 𝑦 ) → 𝑦 ∼ 𝑥 ) |
| 21 |
12
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∈ 𝑋 ) |
| 22 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑦 ∼ 𝑧 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) ) |
| 23 |
22
|
biimpa |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑦 ∼ 𝑧 ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) |
| 24 |
23
|
adantrl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) ) |
| 25 |
24
|
simp2d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑧 ∈ 𝑋 ) |
| 26 |
|
simpl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 27 |
16
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑦 ) ∈ ℝ ) |
| 28 |
24
|
simp3d |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) |
| 29 |
|
rexadd |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) = ( ( 𝑥 𝐷 𝑦 ) + ( 𝑦 𝐷 𝑧 ) ) ) |
| 30 |
|
readdcl |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) + ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
| 31 |
29 30
|
eqeltrd |
⊢ ( ( ( 𝑥 𝐷 𝑦 ) ∈ ℝ ∧ ( 𝑦 𝐷 𝑧 ) ∈ ℝ ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
| 32 |
27 28 31
|
syl2anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ) |
| 33 |
11
|
adantrr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑦 ∈ 𝑋 ) |
| 34 |
|
xmettri |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
| 35 |
26 21 25 33 34
|
syl13anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) |
| 36 |
|
xmetlecl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ∧ ( ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ∈ ℝ ∧ ( 𝑥 𝐷 𝑧 ) ≤ ( ( 𝑥 𝐷 𝑦 ) +𝑒 ( 𝑦 𝐷 𝑧 ) ) ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) |
| 37 |
26 21 25 32 35 36
|
syl122anc |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) |
| 38 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → ( 𝑥 ∼ 𝑧 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑧 ) ∈ ℝ ) ) ) |
| 40 |
21 25 37 39
|
mpbir3and |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧 ) ) → 𝑥 ∼ 𝑧 ) |
| 41 |
|
xmet0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) = 0 ) |
| 42 |
|
0re |
⊢ 0 ∈ ℝ |
| 43 |
41 42
|
eqeltrdi |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) |
| 44 |
43
|
ex |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 → ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) |
| 45 |
44
|
pm4.71rd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) ) |
| 46 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) |
| 47 |
|
anidm |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ↔ 𝑥 ∈ 𝑋 ) |
| 48 |
47
|
anbi2ci |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 49 |
46 48
|
bitri |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ↔ ( ( 𝑥 𝐷 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ 𝑋 ) ) |
| 50 |
45 49
|
bitr4di |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 51 |
1
|
xmeterval |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∼ 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑥 𝐷 𝑥 ) ∈ ℝ ) ) ) |
| 52 |
50 51
|
bitr4d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥 ) ) |
| 53 |
8 20 40 52
|
iserd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∼ Er 𝑋 ) |