Step |
Hyp |
Ref |
Expression |
1 |
|
xmeter.1 |
⊢ ∼ = ( ◡ 𝐷 “ ℝ ) |
2 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
3 |
|
ffn |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
4 |
|
elpreima |
⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) ) |
6 |
1
|
breqi |
⊢ ( 𝐴 ∼ 𝐵 ↔ 𝐴 ( ◡ 𝐷 “ ℝ ) 𝐵 ) |
7 |
|
df-br |
⊢ ( 𝐴 ( ◡ 𝐷 “ ℝ ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ) |
8 |
6 7
|
bitri |
⊢ ( 𝐴 ∼ 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ◡ 𝐷 “ ℝ ) ) |
9 |
|
df-3an |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ↔ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ) |
10 |
|
opelxp |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
11 |
10
|
bicomi |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ) |
12 |
|
df-ov |
⊢ ( 𝐴 𝐷 𝐵 ) = ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) |
13 |
12
|
eleq1i |
⊢ ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ ↔ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) |
14 |
11 13
|
anbi12i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) |
15 |
9 14
|
bitri |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑋 × 𝑋 ) ∧ ( 𝐷 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ ℝ ) ) |
16 |
5 8 15
|
3bitr4g |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐴 ∼ 𝐵 ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ ) ) ) |