Metamath Proof Explorer


Theorem xmetlecl

Description: Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmetlecl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 xmetcl ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* )
2 1 3expb ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* )
3 2 3adant3 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* )
4 simp3l ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → 𝐶 ∈ ℝ )
5 xmetge0 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) )
6 5 3expb ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) )
7 6 3adant3 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) )
8 simp3r ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 )
9 xrrege0 ( ( ( ( 𝐴 𝐷 𝐵 ) ∈ ℝ*𝐶 ∈ ℝ ) ∧ ( 0 ≤ ( 𝐴 𝐷 𝐵 ) ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ )
10 3 4 7 8 9 syl22anc ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴𝑋𝐵𝑋 ) ∧ ( 𝐶 ∈ ℝ ∧ ( 𝐴 𝐷 𝐵 ) ≤ 𝐶 ) ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ )