Step |
Hyp |
Ref |
Expression |
1 |
|
xmetsym |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
2 |
1
|
3expb |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
3 |
2
|
ralrimivva |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) |
4 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
5 |
|
ffn |
⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → 𝐷 Fn ( 𝑋 × 𝑋 ) ) |
6 |
|
tpossym |
⊢ ( 𝐷 Fn ( 𝑋 × 𝑋 ) → ( tpos 𝐷 = 𝐷 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) ) |
7 |
4 5 6
|
3syl |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( tpos 𝐷 = 𝐷 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) = ( 𝑦 𝐷 𝑥 ) ) ) |
8 |
3 7
|
mpbird |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → tpos 𝐷 = 𝐷 ) |