Step |
Hyp |
Ref |
Expression |
1 |
|
ovex |
⊢ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∈ V |
2 |
1
|
rabex |
⊢ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ∈ V |
3 |
|
df-xmet |
⊢ ∞Met = ( 𝑥 ∈ V ↦ { 𝑑 ∈ ( ℝ* ↑m ( 𝑥 × 𝑥 ) ) ∣ ∀ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ( ( ( 𝑦 𝑑 𝑧 ) = 0 ↔ 𝑦 = 𝑧 ) ∧ ∀ 𝑤 ∈ 𝑥 ( 𝑦 𝑑 𝑧 ) ≤ ( ( 𝑤 𝑑 𝑦 ) +𝑒 ( 𝑤 𝑑 𝑧 ) ) ) } ) |
4 |
2 3
|
fnmpti |
⊢ ∞Met Fn V |
5 |
|
fnunirn |
⊢ ( ∞Met Fn V → ( 𝐷 ∈ ∪ ran ∞Met ↔ ∃ 𝑥 ∈ V 𝐷 ∈ ( ∞Met ‘ 𝑥 ) ) ) |
6 |
4 5
|
ax-mp |
⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ ∃ 𝑥 ∈ V 𝐷 ∈ ( ∞Met ‘ 𝑥 ) ) |
7 |
|
id |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝐷 ∈ ( ∞Met ‘ 𝑥 ) ) |
8 |
|
xmetdmdm |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝑥 = dom dom 𝐷 ) |
9 |
8
|
fveq2d |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → ( ∞Met ‘ 𝑥 ) = ( ∞Met ‘ dom dom 𝐷 ) ) |
10 |
7 9
|
eleqtrd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
11 |
10
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ V 𝐷 ∈ ( ∞Met ‘ 𝑥 ) → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
12 |
6 11
|
sylbi |
⊢ ( 𝐷 ∈ ∪ ran ∞Met → 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |
13 |
|
fvssunirn |
⊢ ( ∞Met ‘ dom dom 𝐷 ) ⊆ ∪ ran ∞Met |
14 |
13
|
sseli |
⊢ ( 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) → 𝐷 ∈ ∪ ran ∞Met ) |
15 |
12 14
|
impbii |
⊢ ( 𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ ( ∞Met ‘ dom dom 𝐷 ) ) |