| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mscl.x | ⊢ 𝑋  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | mscl.d | ⊢ 𝐷  =  ( dist ‘ 𝑀 ) | 
						
							| 3 |  | ovres | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 4 | 3 | 3adant1 | ⊢ ( ( 𝑀  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( ( 𝑀  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 )  =  0  ↔  ( 𝐴 𝐷 𝐵 )  =  0 ) ) | 
						
							| 6 | 1 2 | xmsxmet2 | ⊢ ( 𝑀  ∈  ∞MetSp  →  ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 7 |  | xmeteq0 | ⊢ ( ( ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 )  =  0  ↔  𝐴  =  𝐵 ) ) | 
						
							| 8 | 6 7 | syl3an1 | ⊢ ( ( 𝑀  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 )  =  0  ↔  𝐴  =  𝐵 ) ) | 
						
							| 9 | 5 8 | bitr3d | ⊢ ( ( 𝑀  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( ( 𝐴 𝐷 𝐵 )  =  0  ↔  𝐴  =  𝐵 ) ) |