| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mscl.x | ⊢ 𝑋  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | mscl.d | ⊢ 𝐷  =  ( dist ‘ 𝑀 ) | 
						
							| 3 | 1 2 | xmsxmet2 | ⊢ ( 𝑀  ∈  ∞MetSp  →  ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 4 |  | xmetge0 | ⊢ ( ( ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) )  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  0  ≤  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 ) ) | 
						
							| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝑀  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  0  ≤  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 ) ) | 
						
							| 6 |  | ovres | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 7 | 6 | 3adant1 | ⊢ ( ( 𝑀  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 ( 𝐷  ↾  ( 𝑋  ×  𝑋 ) ) 𝐵 )  =  ( 𝐴 𝐷 𝐵 ) ) | 
						
							| 8 | 5 7 | breqtrd | ⊢ ( ( 𝑀  ∈  ∞MetSp  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  0  ≤  ( 𝐴 𝐷 𝐵 ) ) |