Metamath Proof Explorer


Theorem xmssym

Description: The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mscl.x 𝑋 = ( Base ‘ 𝑀 )
mscl.d 𝐷 = ( dist ‘ 𝑀 )
Assertion xmssym ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mscl.x 𝑋 = ( Base ‘ 𝑀 )
2 mscl.d 𝐷 = ( dist ‘ 𝑀 )
3 1 2 xmsxmet2 ( 𝑀 ∈ ∞MetSp → ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) )
4 xmetsym ( ( ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐴 ) )
5 3 4 syl3an1 ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐴 ) )
6 simp2 ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐴𝑋 )
7 simp3 ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋 ) → 𝐵𝑋 )
8 6 7 ovresd ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) )
9 7 6 ovresd ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐵 ( 𝐷 ↾ ( 𝑋 × 𝑋 ) ) 𝐴 ) = ( 𝐵 𝐷 𝐴 ) )
10 5 8 9 3eqtr3d ( ( 𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( 𝐵 𝐷 𝐴 ) )