Metamath Proof Explorer


Theorem xmstrkgc

Description: Any metric space fulfills Tarski's geometry axioms of congruence. (Contributed by Thierry Arnoux, 13-Mar-2019)

Ref Expression
Assertion xmstrkgc ( 𝐺 ∈ ∞MetSp β†’ 𝐺 ∈ TarskiGC )

Proof

Step Hyp Ref Expression
1 elex ⊒ ( 𝐺 ∈ ∞MetSp β†’ 𝐺 ∈ V )
2 eqid ⊒ ( Base β€˜ 𝐺 ) = ( Base β€˜ 𝐺 )
3 eqid ⊒ ( dist β€˜ 𝐺 ) = ( dist β€˜ 𝐺 )
4 2 3 xmssym ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ) β†’ ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist β€˜ 𝐺 ) π‘₯ ) )
5 4 3expb ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist β€˜ 𝐺 ) π‘₯ ) )
6 5 ralrimivva ⊒ ( 𝐺 ∈ ∞MetSp β†’ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐺 ) ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist β€˜ 𝐺 ) π‘₯ ) )
7 simpl ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ 𝐺 ∈ ∞MetSp )
8 simpr3 ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ 𝑧 ∈ ( Base β€˜ 𝐺 ) )
9 equid ⊒ 𝑧 = 𝑧
10 2 3 xmseq0 ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) β†’ ( ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) = 0 ↔ 𝑧 = 𝑧 ) )
11 9 10 mpbiri ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) β†’ ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) = 0 )
12 7 8 8 11 syl3anc ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) = 0 )
13 12 eqeq2d ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) ↔ ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = 0 ) )
14 2 3 xmseq0 ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ) β†’ ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) )
15 14 3adant3r3 ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = 0 ↔ π‘₯ = 𝑦 ) )
16 13 15 bitrd ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) ↔ π‘₯ = 𝑦 ) )
17 16 biimpd ⊒ ( ( 𝐺 ∈ ∞MetSp ∧ ( π‘₯ ∈ ( Base β€˜ 𝐺 ) ∧ 𝑦 ∈ ( Base β€˜ 𝐺 ) ∧ 𝑧 ∈ ( Base β€˜ 𝐺 ) ) ) β†’ ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) β†’ π‘₯ = 𝑦 ) )
18 17 ralrimivvva ⊒ ( 𝐺 ∈ ∞MetSp β†’ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑧 ∈ ( Base β€˜ 𝐺 ) ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) β†’ π‘₯ = 𝑦 ) )
19 6 18 jca ⊒ ( 𝐺 ∈ ∞MetSp β†’ ( βˆ€ π‘₯ ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐺 ) ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist β€˜ 𝐺 ) π‘₯ ) ∧ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑧 ∈ ( Base β€˜ 𝐺 ) ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) β†’ π‘₯ = 𝑦 ) ) )
20 eqid ⊒ ( Itv β€˜ 𝐺 ) = ( Itv β€˜ 𝐺 )
21 2 3 20 istrkgc ⊒ ( 𝐺 ∈ TarskiGC ↔ ( 𝐺 ∈ V ∧ ( βˆ€ π‘₯ ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐺 ) ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑦 ( dist β€˜ 𝐺 ) π‘₯ ) ∧ βˆ€ π‘₯ ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑦 ∈ ( Base β€˜ 𝐺 ) βˆ€ 𝑧 ∈ ( Base β€˜ 𝐺 ) ( ( π‘₯ ( dist β€˜ 𝐺 ) 𝑦 ) = ( 𝑧 ( dist β€˜ 𝐺 ) 𝑧 ) β†’ π‘₯ = 𝑦 ) ) ) )
22 1 19 21 sylanbrc ⊒ ( 𝐺 ∈ ∞MetSp β†’ 𝐺 ∈ TarskiGC )