Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
β’ ( πΊ β βMetSp β πΊ β V ) |
2 |
|
eqid |
β’ ( Base β πΊ ) = ( Base β πΊ ) |
3 |
|
eqid |
β’ ( dist β πΊ ) = ( dist β πΊ ) |
4 |
2 3
|
xmssym |
β’ ( ( πΊ β βMetSp β§ π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) ) β ( π₯ ( dist β πΊ ) π¦ ) = ( π¦ ( dist β πΊ ) π₯ ) ) |
5 |
4
|
3expb |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) ) ) β ( π₯ ( dist β πΊ ) π¦ ) = ( π¦ ( dist β πΊ ) π₯ ) ) |
6 |
5
|
ralrimivva |
β’ ( πΊ β βMetSp β β π₯ β ( Base β πΊ ) β π¦ β ( Base β πΊ ) ( π₯ ( dist β πΊ ) π¦ ) = ( π¦ ( dist β πΊ ) π₯ ) ) |
7 |
|
simpl |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) ) β πΊ β βMetSp ) |
8 |
|
simpr3 |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) ) β π§ β ( Base β πΊ ) ) |
9 |
|
equid |
β’ π§ = π§ |
10 |
2 3
|
xmseq0 |
β’ ( ( πΊ β βMetSp β§ π§ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) β ( ( π§ ( dist β πΊ ) π§ ) = 0 β π§ = π§ ) ) |
11 |
9 10
|
mpbiri |
β’ ( ( πΊ β βMetSp β§ π§ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) β ( π§ ( dist β πΊ ) π§ ) = 0 ) |
12 |
7 8 8 11
|
syl3anc |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) ) β ( π§ ( dist β πΊ ) π§ ) = 0 ) |
13 |
12
|
eqeq2d |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) ) β ( ( π₯ ( dist β πΊ ) π¦ ) = ( π§ ( dist β πΊ ) π§ ) β ( π₯ ( dist β πΊ ) π¦ ) = 0 ) ) |
14 |
2 3
|
xmseq0 |
β’ ( ( πΊ β βMetSp β§ π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) ) β ( ( π₯ ( dist β πΊ ) π¦ ) = 0 β π₯ = π¦ ) ) |
15 |
14
|
3adant3r3 |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) ) β ( ( π₯ ( dist β πΊ ) π¦ ) = 0 β π₯ = π¦ ) ) |
16 |
13 15
|
bitrd |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) ) β ( ( π₯ ( dist β πΊ ) π¦ ) = ( π§ ( dist β πΊ ) π§ ) β π₯ = π¦ ) ) |
17 |
16
|
biimpd |
β’ ( ( πΊ β βMetSp β§ ( π₯ β ( Base β πΊ ) β§ π¦ β ( Base β πΊ ) β§ π§ β ( Base β πΊ ) ) ) β ( ( π₯ ( dist β πΊ ) π¦ ) = ( π§ ( dist β πΊ ) π§ ) β π₯ = π¦ ) ) |
18 |
17
|
ralrimivvva |
β’ ( πΊ β βMetSp β β π₯ β ( Base β πΊ ) β π¦ β ( Base β πΊ ) β π§ β ( Base β πΊ ) ( ( π₯ ( dist β πΊ ) π¦ ) = ( π§ ( dist β πΊ ) π§ ) β π₯ = π¦ ) ) |
19 |
6 18
|
jca |
β’ ( πΊ β βMetSp β ( β π₯ β ( Base β πΊ ) β π¦ β ( Base β πΊ ) ( π₯ ( dist β πΊ ) π¦ ) = ( π¦ ( dist β πΊ ) π₯ ) β§ β π₯ β ( Base β πΊ ) β π¦ β ( Base β πΊ ) β π§ β ( Base β πΊ ) ( ( π₯ ( dist β πΊ ) π¦ ) = ( π§ ( dist β πΊ ) π§ ) β π₯ = π¦ ) ) ) |
20 |
|
eqid |
β’ ( Itv β πΊ ) = ( Itv β πΊ ) |
21 |
2 3 20
|
istrkgc |
β’ ( πΊ β TarskiGC β ( πΊ β V β§ ( β π₯ β ( Base β πΊ ) β π¦ β ( Base β πΊ ) ( π₯ ( dist β πΊ ) π¦ ) = ( π¦ ( dist β πΊ ) π₯ ) β§ β π₯ β ( Base β πΊ ) β π¦ β ( Base β πΊ ) β π§ β ( Base β πΊ ) ( ( π₯ ( dist β πΊ ) π¦ ) = ( π§ ( dist β πΊ ) π§ ) β π₯ = π¦ ) ) ) ) |
22 |
1 19 21
|
sylanbrc |
β’ ( πΊ β βMetSp β πΊ β TarskiGC ) |