Step |
Hyp |
Ref |
Expression |
1 |
|
xmsusp.x |
⊢ 𝑋 = ( Base ‘ 𝐹 ) |
2 |
|
xmsusp.d |
⊢ 𝐷 = ( ( dist ‘ 𝐹 ) ↾ ( 𝑋 × 𝑋 ) ) |
3 |
|
xmsusp.u |
⊢ 𝑈 = ( UnifSt ‘ 𝐹 ) |
4 |
|
simp3 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝑈 = ( metUnif ‘ 𝐷 ) ) |
5 |
|
simp1 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝑋 ≠ ∅ ) |
6 |
1 2
|
xmsxmet |
⊢ ( 𝐹 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
8 |
|
xmetpsmet |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) |
9 |
|
metuust |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
11 |
5 7 10
|
syl2anc |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( metUnif ‘ 𝐷 ) ∈ ( UnifOn ‘ 𝑋 ) ) |
12 |
4 11
|
eqeltrd |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
13 |
|
xmetutop |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
14 |
5 7 13
|
syl2anc |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) = ( MetOpen ‘ 𝐷 ) ) |
15 |
4
|
fveq2d |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( unifTop ‘ 𝑈 ) = ( unifTop ‘ ( metUnif ‘ 𝐷 ) ) ) |
16 |
|
eqid |
⊢ ( TopOpen ‘ 𝐹 ) = ( TopOpen ‘ 𝐹 ) |
17 |
16 1 2
|
xmstopn |
⊢ ( 𝐹 ∈ ∞MetSp → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
19 |
14 15 18
|
3eqtr4rd |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( TopOpen ‘ 𝐹 ) = ( unifTop ‘ 𝑈 ) ) |
20 |
1 3 16
|
isusp |
⊢ ( 𝐹 ∈ UnifSp ↔ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( TopOpen ‘ 𝐹 ) = ( unifTop ‘ 𝑈 ) ) ) |
21 |
12 19 20
|
sylanbrc |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ UnifSp ) |