| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 2 |
|
xmulval |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐴 ·e 0 ) = if ( ( 𝐴 = 0 ∨ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 ∧ 𝐴 = +∞ ) ∨ ( 0 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = +∞ ) ∨ ( 𝐴 < 0 ∧ 0 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 0 ∧ 𝐴 = -∞ ) ∨ ( 0 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = -∞ ) ∨ ( 𝐴 < 0 ∧ 0 = +∞ ) ) ) , -∞ , ( 𝐴 · 0 ) ) ) ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = if ( ( 𝐴 = 0 ∨ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 ∧ 𝐴 = +∞ ) ∨ ( 0 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = +∞ ) ∨ ( 𝐴 < 0 ∧ 0 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 0 ∧ 𝐴 = -∞ ) ∨ ( 0 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = -∞ ) ∨ ( 𝐴 < 0 ∧ 0 = +∞ ) ) ) , -∞ , ( 𝐴 · 0 ) ) ) ) ) |
| 4 |
|
eqid |
⊢ 0 = 0 |
| 5 |
4
|
olci |
⊢ ( 𝐴 = 0 ∨ 0 = 0 ) |
| 6 |
5
|
iftruei |
⊢ if ( ( 𝐴 = 0 ∨ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 ∧ 𝐴 = +∞ ) ∨ ( 0 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = +∞ ) ∨ ( 𝐴 < 0 ∧ 0 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 0 ∧ 𝐴 = -∞ ) ∨ ( 0 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 0 = -∞ ) ∨ ( 𝐴 < 0 ∧ 0 = +∞ ) ) ) , -∞ , ( 𝐴 · 0 ) ) ) ) = 0 |
| 7 |
3 6
|
eqtrdi |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = 0 ) |