Metamath Proof Explorer


Theorem xmul02

Description: Extended real version of mul02 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmul02 ( 𝐴 ∈ ℝ* → ( 0 ·e 𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 0xr 0 ∈ ℝ*
2 xmulcom ( ( 0 ∈ ℝ*𝐴 ∈ ℝ* ) → ( 0 ·e 𝐴 ) = ( 𝐴 ·e 0 ) )
3 1 2 mpan ( 𝐴 ∈ ℝ* → ( 0 ·e 𝐴 ) = ( 𝐴 ·e 0 ) )
4 xmul01 ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 0 ) = 0 )
5 3 4 eqtrd ( 𝐴 ∈ ℝ* → ( 0 ·e 𝐴 ) = 0 )