| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·e 𝐵 ) = ( 𝐴 ·e 𝐵 ) ) |
| 2 |
1
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 3 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 5 |
|
oveq1 |
⊢ ( 𝑥 = -𝑒 𝐴 → ( 𝑥 ·e 𝐵 ) = ( -𝑒 𝐴 ·e 𝐵 ) ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑥 = -𝑒 𝐴 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑥 = -𝑒 𝐴 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = -𝑒 𝐴 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 9 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
| 10 |
|
xmulcl |
⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
| 11 |
9 10
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
| 12 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
| 13 |
|
xmulcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 15 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
| 16 |
12 14 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
| 17 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e 𝐵 ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 19 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ·e 𝐶 ) = ( 𝐵 ·e 𝐶 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 21 |
18 20
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e -𝑒 𝐵 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑦 = -𝑒 𝐵 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) ) |
| 24 |
|
oveq1 |
⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑦 ·e 𝐶 ) = ( -𝑒 𝐵 ·e 𝐶 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑦 = -𝑒 𝐵 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) ) |
| 26 |
23 25
|
eqeq12d |
⊢ ( 𝑦 = -𝑒 𝐵 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) ) ) |
| 27 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝑥 ∈ ℝ* ) |
| 28 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝐵 ∈ ℝ* ) |
| 29 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ·e 𝐵 ) ∈ ℝ* ) |
| 30 |
27 28 29
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e 𝐵 ) ∈ ℝ* ) |
| 31 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → 𝐶 ∈ ℝ* ) |
| 32 |
|
xmulcl |
⊢ ( ( ( 𝑥 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
| 33 |
30 31 32
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ∈ ℝ* ) |
| 34 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
| 35 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
| 36 |
27 34 35
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ∈ ℝ* ) |
| 37 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) |
| 38 |
|
oveq2 |
⊢ ( 𝑧 = 𝐶 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e 𝐶 ) ) |
| 39 |
38
|
oveq2d |
⊢ ( 𝑧 = 𝐶 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 40 |
37 39
|
eqeq12d |
⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) ) |
| 41 |
|
oveq2 |
⊢ ( 𝑧 = -𝑒 𝐶 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) ) |
| 42 |
|
oveq2 |
⊢ ( 𝑧 = -𝑒 𝐶 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e -𝑒 𝐶 ) ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑧 = -𝑒 𝐶 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) ) |
| 44 |
41 43
|
eqeq12d |
⊢ ( 𝑧 = -𝑒 𝐶 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) ) ) |
| 45 |
27
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝑥 ∈ ℝ* ) |
| 46 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝑦 ∈ ℝ* ) |
| 47 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
| 48 |
45 46 47
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e 𝑦 ) ∈ ℝ* ) |
| 49 |
31
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → 𝐶 ∈ ℝ* ) |
| 50 |
|
xmulcl |
⊢ ( ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ∈ ℝ* ) |
| 51 |
48 49 50
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ∈ ℝ* ) |
| 52 |
|
xmulcl |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) |
| 53 |
46 49 52
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) |
| 54 |
|
xmulcl |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ∈ ℝ* ) |
| 55 |
45 53 54
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ∈ ℝ* ) |
| 56 |
|
xmulasslem3 |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ∧ ( 𝑧 ∈ ℝ* ∧ 0 < 𝑧 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
| 57 |
56
|
ad4ant234 |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) ∧ ( 𝑧 ∈ ℝ* ∧ 0 < 𝑧 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) |
| 58 |
|
xmul01 |
⊢ ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = 0 ) |
| 59 |
48 58
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = 0 ) |
| 60 |
|
xmul01 |
⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 ·e 0 ) = 0 ) |
| 61 |
45 60
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e 0 ) = 0 ) |
| 62 |
59 61
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e 0 ) ) |
| 63 |
|
xmul01 |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑦 ·e 0 ) = 0 ) |
| 64 |
63
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e 0 ) = 0 ) |
| 65 |
64
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e 0 ) ) = ( 𝑥 ·e 0 ) ) |
| 66 |
62 65
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) |
| 67 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( ( 𝑥 ·e 𝑦 ) ·e 0 ) ) |
| 68 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( 𝑦 ·e 𝑧 ) = ( 𝑦 ·e 0 ) ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝑧 = 0 → ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) |
| 70 |
67 69
|
eqeq12d |
⊢ ( 𝑧 = 0 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ↔ ( ( 𝑥 ·e 𝑦 ) ·e 0 ) = ( 𝑥 ·e ( 𝑦 ·e 0 ) ) ) ) |
| 71 |
66 70
|
syl5ibrcom |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑧 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝑧 ) = ( 𝑥 ·e ( 𝑦 ·e 𝑧 ) ) ) ) |
| 72 |
|
xmulneg2 |
⊢ ( ( ( 𝑥 ·e 𝑦 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) |
| 73 |
48 49 72
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e -𝑒 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) ) |
| 74 |
|
xmulneg2 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑦 ·e -𝑒 𝐶 ) = -𝑒 ( 𝑦 ·e 𝐶 ) ) |
| 75 |
46 49 74
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑦 ·e -𝑒 𝐶 ) = -𝑒 ( 𝑦 ·e 𝐶 ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) = ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) ) |
| 77 |
|
xmulneg2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝑦 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 78 |
45 53 77
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e -𝑒 ( 𝑦 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 79 |
76 78
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( 𝑥 ·e ( 𝑦 ·e -𝑒 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 80 |
40 44 51 55 49 57 71 73 79
|
xmulasslem |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) ∧ ( 𝑦 ∈ ℝ* ∧ 0 < 𝑦 ) ) → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) |
| 81 |
|
xmul02 |
⊢ ( 𝐶 ∈ ℝ* → ( 0 ·e 𝐶 ) = 0 ) |
| 82 |
81
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e 𝐶 ) = 0 ) |
| 83 |
82
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 0 ·e 𝐶 ) = 0 ) |
| 84 |
60
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e 0 ) = 0 ) |
| 85 |
83 84
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 0 ·e 𝐶 ) = ( 𝑥 ·e 0 ) ) |
| 86 |
84
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
| 87 |
83
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( 0 ·e 𝐶 ) ) = ( 𝑥 ·e 0 ) ) |
| 88 |
85 86 87
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) |
| 89 |
|
oveq2 |
⊢ ( 𝑦 = 0 → ( 𝑥 ·e 𝑦 ) = ( 𝑥 ·e 0 ) ) |
| 90 |
89
|
oveq1d |
⊢ ( 𝑦 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( ( 𝑥 ·e 0 ) ·e 𝐶 ) ) |
| 91 |
|
oveq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
| 92 |
91
|
oveq2d |
⊢ ( 𝑦 = 0 → ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) |
| 93 |
90 92
|
eqeq12d |
⊢ ( 𝑦 = 0 → ( ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ↔ ( ( 𝑥 ·e 0 ) ·e 𝐶 ) = ( 𝑥 ·e ( 0 ·e 𝐶 ) ) ) ) |
| 94 |
88 93
|
syl5ibrcom |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑦 = 0 → ( ( 𝑥 ·e 𝑦 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝑦 ·e 𝐶 ) ) ) ) |
| 95 |
|
xmulneg2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝑥 ·e -𝑒 𝐵 ) = -𝑒 ( 𝑥 ·e 𝐵 ) ) |
| 96 |
27 28 95
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e -𝑒 𝐵 ) = -𝑒 ( 𝑥 ·e 𝐵 ) ) |
| 97 |
96
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 98 |
|
xmulneg1 |
⊢ ( ( ( 𝑥 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 99 |
30 31 98
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( -𝑒 ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 100 |
97 99
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e -𝑒 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) ) |
| 101 |
|
xmulneg1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐵 ·e 𝐶 ) = -𝑒 ( 𝐵 ·e 𝐶 ) ) |
| 102 |
28 31 101
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( -𝑒 𝐵 ·e 𝐶 ) = -𝑒 ( 𝐵 ·e 𝐶 ) ) |
| 103 |
102
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) = ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) ) |
| 104 |
|
xmulneg2 |
⊢ ( ( 𝑥 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 105 |
27 34 104
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e -𝑒 ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 106 |
103 105
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( 𝑥 ·e ( -𝑒 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 107 |
21 26 33 36 28 80 94 100 106
|
xmulasslem |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) ∧ ( 𝑥 ∈ ℝ* ∧ 0 < 𝑥 ) ) → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 108 |
|
xmul02 |
⊢ ( 𝐵 ∈ ℝ* → ( 0 ·e 𝐵 ) = 0 ) |
| 109 |
108
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e 𝐵 ) = 0 ) |
| 110 |
109
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e 𝐶 ) ) |
| 111 |
|
xmul02 |
⊢ ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* → ( 0 ·e ( 𝐵 ·e 𝐶 ) ) = 0 ) |
| 112 |
14 111
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 0 ·e ( 𝐵 ·e 𝐶 ) ) = 0 ) |
| 113 |
82 110 112
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 114 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ·e 𝐵 ) = ( 0 ·e 𝐵 ) ) |
| 115 |
114
|
oveq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( ( 0 ·e 𝐵 ) ·e 𝐶 ) ) |
| 116 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 117 |
115 116
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ↔ ( ( 0 ·e 𝐵 ) ·e 𝐶 ) = ( 0 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 118 |
113 117
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑥 = 0 → ( ( 𝑥 ·e 𝐵 ) ·e 𝐶 ) = ( 𝑥 ·e ( 𝐵 ·e 𝐶 ) ) ) ) |
| 119 |
|
xmulneg1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
| 120 |
119
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐴 ·e 𝐵 ) = -𝑒 ( 𝐴 ·e 𝐵 ) ) |
| 121 |
120
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 122 |
|
xmulneg1 |
⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 123 |
9 122
|
stoic3 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 124 |
121 123
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( -𝑒 𝐴 ·e 𝐵 ) ·e 𝐶 ) = -𝑒 ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) ) |
| 125 |
|
xmulneg1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) → ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 126 |
12 14 125
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( -𝑒 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = -𝑒 ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
| 127 |
4 8 11 16 12 107 118 124 126
|
xmulasslem |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |