Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xmulasslem2 | ⊢ ( ( 0 < 𝐴 ∧ 𝐴 = -∞ ) → 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | ⊢ ( 𝐴 = -∞ → ( 0 < 𝐴 ↔ 0 < -∞ ) ) | |
2 | 0xr | ⊢ 0 ∈ ℝ* | |
3 | nltmnf | ⊢ ( 0 ∈ ℝ* → ¬ 0 < -∞ ) | |
4 | 2 3 | ax-mp | ⊢ ¬ 0 < -∞ |
5 | 4 | pm2.21i | ⊢ ( 0 < -∞ → 𝜑 ) |
6 | 1 5 | syl6bi | ⊢ ( 𝐴 = -∞ → ( 0 < 𝐴 → 𝜑 ) ) |
7 | 6 | impcom | ⊢ ( ( 0 < 𝐴 ∧ 𝐴 = -∞ ) → 𝜑 ) |