Metamath Proof Explorer


Theorem xmulasslem2

Description: Lemma for xmulass . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulasslem2 ( ( 0 < 𝐴𝐴 = -∞ ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝐴 = -∞ → ( 0 < 𝐴 ↔ 0 < -∞ ) )
2 0xr 0 ∈ ℝ*
3 nltmnf ( 0 ∈ ℝ* → ¬ 0 < -∞ )
4 2 3 ax-mp ¬ 0 < -∞
5 4 pm2.21i ( 0 < -∞ → 𝜑 )
6 1 5 syl6bi ( 𝐴 = -∞ → ( 0 < 𝐴𝜑 ) )
7 6 impcom ( ( 0 < 𝐴𝐴 = -∞ ) → 𝜑 )