Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
2 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
3 |
|
recn |
⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) |
4 |
|
mulass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
6 |
5
|
3expa |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
7 |
|
remulcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) |
8 |
|
rexmul |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 · 𝐵 ) · 𝐶 ) ) |
9 |
7 8
|
sylan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 · 𝐵 ) · 𝐶 ) ) |
10 |
|
remulcl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
11 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 · 𝐶 ) ∈ ℝ ) → ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
12 |
10 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) → ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
13 |
12
|
anassrs |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |
14 |
6 9 13
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) ) |
15 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 · 𝐵 ) ·e 𝐶 ) ) |
18 |
|
rexmul |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐵 ·e 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e ( 𝐵 · 𝐶 ) ) ) |
21 |
14 17 20
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
22 |
21
|
adantll |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( ( 𝐴 ·e 𝐵 ) ·e +∞ ) ) |
24 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 𝐴 ∈ ℝ* ) |
25 |
|
simp2l |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
26 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
28 |
|
xmulgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
29 |
28
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
30 |
|
xmulpnf1 |
⊢ ( ( ( 𝐴 ·e 𝐵 ) ∈ ℝ* ∧ 0 < ( 𝐴 ·e 𝐵 ) ) → ( ( 𝐴 ·e 𝐵 ) ·e +∞ ) = +∞ ) |
31 |
27 29 30
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( ( 𝐴 ·e 𝐵 ) ·e +∞ ) = +∞ ) |
32 |
23 31
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = +∞ ) |
33 |
|
simpl1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ) |
34 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
35 |
33 34
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐴 ·e +∞ ) = +∞ ) |
36 |
32 35
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
37 |
|
oveq2 |
⊢ ( 𝐶 = +∞ → ( 𝐵 ·e 𝐶 ) = ( 𝐵 ·e +∞ ) ) |
38 |
|
xmulpnf1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( 𝐵 ·e +∞ ) = +∞ ) |
39 |
38
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐵 ·e +∞ ) = +∞ ) |
40 |
37 39
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐵 ·e 𝐶 ) = +∞ ) |
41 |
40
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e +∞ ) ) |
42 |
36 41
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
43 |
42
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐶 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
44 |
|
simpl3r |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < 𝐶 ) |
45 |
|
xmulasslem2 |
⊢ ( ( 0 < 𝐶 ∧ 𝐶 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
46 |
44 45
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) ∧ 𝐶 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
47 |
|
simp3l |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
48 |
|
elxr |
⊢ ( 𝐶 ∈ ℝ* ↔ ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
49 |
47 48
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐶 ∈ ℝ ∨ 𝐶 = +∞ ∨ 𝐶 = -∞ ) ) |
51 |
22 43 46 50
|
mpjao3dan |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
52 |
51
|
anassrs |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
53 |
|
xmulpnf2 |
⊢ ( ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) → ( +∞ ·e 𝐶 ) = +∞ ) |
54 |
53
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e 𝐶 ) = +∞ ) |
55 |
34
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐴 ·e +∞ ) = +∞ ) |
56 |
54 55
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
57 |
56
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( +∞ ·e 𝐶 ) = ( 𝐴 ·e +∞ ) ) |
58 |
|
oveq2 |
⊢ ( 𝐵 = +∞ → ( 𝐴 ·e 𝐵 ) = ( 𝐴 ·e +∞ ) ) |
59 |
58 55
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
60 |
59
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) |
61 |
|
oveq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) |
62 |
61 54
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( 𝐵 ·e 𝐶 ) = +∞ ) |
63 |
62
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( 𝐴 ·e +∞ ) ) |
64 |
57 60 63
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
65 |
64
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
66 |
|
simpl2r |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) → 0 < 𝐵 ) |
67 |
|
xmulasslem2 |
⊢ ( ( 0 < 𝐵 ∧ 𝐵 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
68 |
66 67
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
69 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
70 |
25 69
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
71 |
70
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
72 |
52 65 68 71
|
mpjao3dan |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
73 |
|
simpl3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) |
74 |
73 53
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( +∞ ·e 𝐶 ) = +∞ ) |
75 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 𝐵 ) = ( +∞ ·e 𝐵 ) ) |
76 |
|
xmulpnf2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( +∞ ·e 𝐵 ) = +∞ ) |
77 |
76
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e 𝐵 ) = +∞ ) |
78 |
75 77
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
79 |
78
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( +∞ ·e 𝐶 ) ) |
80 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = ( +∞ ·e ( 𝐵 ·e 𝐶 ) ) ) |
81 |
|
xmulcl |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
82 |
25 47 81
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐵 ·e 𝐶 ) ∈ ℝ* ) |
83 |
|
xmulgt0 |
⊢ ( ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < ( 𝐵 ·e 𝐶 ) ) |
84 |
83
|
3adant1 |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < ( 𝐵 ·e 𝐶 ) ) |
85 |
|
xmulpnf2 |
⊢ ( ( ( 𝐵 ·e 𝐶 ) ∈ ℝ* ∧ 0 < ( 𝐵 ·e 𝐶 ) ) → ( +∞ ·e ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
86 |
82 84 85
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( +∞ ·e ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
87 |
80 86
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) = +∞ ) |
88 |
74 79 87
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = +∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
89 |
|
simp1r |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → 0 < 𝐴 ) |
90 |
|
xmulasslem2 |
⊢ ( ( 0 < 𝐴 ∧ 𝐴 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
91 |
89 90
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) ∧ 𝐴 = -∞ ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |
92 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
93 |
24 92
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
94 |
72 88 91 93
|
mpjao3dan |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ* ∧ 0 < 𝐶 ) ) → ( ( 𝐴 ·e 𝐵 ) ·e 𝐶 ) = ( 𝐴 ·e ( 𝐵 ·e 𝐶 ) ) ) |