Metamath Proof Explorer


Theorem xmulcld

Description: Closure of extended real multiplication. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses xnegcld.1 ( 𝜑𝐴 ∈ ℝ* )
xaddcld.2 ( 𝜑𝐵 ∈ ℝ* )
Assertion xmulcld ( 𝜑 → ( 𝐴 ·e 𝐵 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 xnegcld.1 ( 𝜑𝐴 ∈ ℝ* )
2 xaddcld.2 ( 𝜑𝐵 ∈ ℝ* )
3 xmulcl ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 ·e 𝐵 ) ∈ ℝ* )