Metamath Proof Explorer
Description: Closure of extended real multiplication. (Contributed by Mario
Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
xnegcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
|
|
xaddcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
|
Assertion |
xmulcld |
⊢ ( 𝜑 → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xnegcld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
xaddcld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |
4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ·e 𝐵 ) ∈ ℝ* ) |