| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 2 |
1
|
a1i |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) → 0 ∈ ℝ* ) |
| 3 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 4 |
3
|
a1i |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) → +∞ ∈ ℝ* ) |
| 5 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 6 |
5
|
a1i |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → -∞ ∈ ℝ* ) |
| 7 |
|
xmullem |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → 𝑥 ∈ ℝ ) |
| 8 |
|
ancom |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ↔ ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) |
| 9 |
|
orcom |
⊢ ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) |
| 10 |
9
|
notbii |
⊢ ( ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) |
| 11 |
8 10
|
anbi12i |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ↔ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) ) |
| 12 |
|
orcom |
⊢ ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ↔ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) |
| 13 |
12
|
notbii |
⊢ ( ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) |
| 14 |
11 13
|
anbi12i |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ↔ ( ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) ) |
| 15 |
|
orcom |
⊢ ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ↔ ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ) ) |
| 16 |
15
|
notbii |
⊢ ( ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ↔ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ) ) |
| 17 |
|
xmullem |
⊢ ( ( ( ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ¬ ( 𝑦 = 0 ∨ 𝑥 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ∨ ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ) ) → 𝑦 ∈ ℝ ) |
| 18 |
14 16 17
|
syl2anb |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → 𝑦 ∈ ℝ ) |
| 19 |
7 18
|
remulcld |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
| 20 |
19
|
rexrd |
⊢ ( ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ* ) |
| 21 |
6 20
|
ifclda |
⊢ ( ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) ∧ ¬ ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ∈ ℝ* ) |
| 22 |
4 21
|
ifclda |
⊢ ( ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ¬ ( 𝑥 = 0 ∨ 𝑦 = 0 ) ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ∈ ℝ* ) |
| 23 |
2 22
|
ifclda |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ∈ ℝ* ) |
| 24 |
23
|
rgen2 |
⊢ ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ∈ ℝ* |
| 25 |
|
df-xmul |
⊢ ·e = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ) |
| 26 |
25
|
fmpo |
⊢ ( ∀ 𝑥 ∈ ℝ* ∀ 𝑦 ∈ ℝ* if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ∈ ℝ* ↔ ·e : ( ℝ* × ℝ* ) ⟶ ℝ* ) |
| 27 |
24 26
|
mpbi |
⊢ ·e : ( ℝ* × ℝ* ) ⟶ ℝ* |