Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 0 < 𝐴 ) |
2 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → 0 < 𝐵 ) |
3 |
1 2
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) |
4 |
|
mulgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
5 |
4
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
6 |
5
|
ancoms |
⊢ ( ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < ( 𝐴 · 𝐵 ) ) |
7 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → ( 𝐴 ·e 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
9 |
6 8
|
breqtrrd |
⊢ ( ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
10 |
3 9
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
11 |
10
|
anassrs |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 ∈ ℝ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
12 |
|
0ltpnf |
⊢ 0 < +∞ |
13 |
|
oveq2 |
⊢ ( 𝐵 = +∞ → ( 𝐴 ·e 𝐵 ) = ( 𝐴 ·e +∞ ) ) |
14 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 𝐴 ·e +∞ ) = +∞ ) |
16 |
13 15
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐵 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
17 |
12 16
|
breqtrrid |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐵 = +∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = +∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
19 |
|
simplrr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → 0 < 𝐵 ) |
20 |
|
xmulasslem2 |
⊢ ( ( 0 < 𝐵 ∧ 𝐵 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
21 |
19 20
|
sylan |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) ∧ 𝐵 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
22 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
23 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
24 |
22 23
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
25 |
24
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
26 |
11 18 21 25
|
mpjao3dan |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 ∈ ℝ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
27 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 𝐵 ) = ( +∞ ·e 𝐵 ) ) |
28 |
|
xmulpnf2 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) → ( +∞ ·e 𝐵 ) = +∞ ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( +∞ ·e 𝐵 ) = +∞ ) |
30 |
27 29
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 = +∞ ) → ( 𝐴 ·e 𝐵 ) = +∞ ) |
31 |
12 30
|
breqtrrid |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 = +∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
32 |
|
xmulasslem2 |
⊢ ( ( 0 < 𝐴 ∧ 𝐴 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
33 |
32
|
ad4ant24 |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) ∧ 𝐴 = -∞ ) → 0 < ( 𝐴 ·e 𝐵 ) ) |
34 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
35 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
36 |
34 35
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
37 |
26 31 33 36
|
mpjao3dan |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ* ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 ·e 𝐵 ) ) |