| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mnfnepnf |
⊢ -∞ ≠ +∞ |
| 2 |
|
eqeq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 = +∞ ↔ -∞ = +∞ ) ) |
| 3 |
2
|
necon3bbid |
⊢ ( 𝐴 = -∞ → ( ¬ 𝐴 = +∞ ↔ -∞ ≠ +∞ ) ) |
| 4 |
1 3
|
mpbiri |
⊢ ( 𝐴 = -∞ → ¬ 𝐴 = +∞ ) |
| 5 |
4
|
con2i |
⊢ ( 𝐴 = +∞ → ¬ 𝐴 = -∞ ) |
| 6 |
5
|
adantl |
⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐴 = -∞ ) |
| 7 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 8 |
|
nltmnf |
⊢ ( 0 ∈ ℝ* → ¬ 0 < -∞ ) |
| 9 |
7 8
|
ax-mp |
⊢ ¬ 0 < -∞ |
| 10 |
|
breq2 |
⊢ ( 𝐴 = -∞ → ( 0 < 𝐴 ↔ 0 < -∞ ) ) |
| 11 |
9 10
|
mtbiri |
⊢ ( 𝐴 = -∞ → ¬ 0 < 𝐴 ) |
| 12 |
11
|
con2i |
⊢ ( 0 < 𝐴 → ¬ 𝐴 = -∞ ) |
| 13 |
12
|
adantr |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐴 = -∞ ) |
| 14 |
6 13
|
jaoi |
⊢ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐴 = -∞ ) |
| 15 |
14
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐴 = -∞ ) ) |
| 16 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐵 ∈ ℝ* ) |
| 17 |
|
xrltnsym |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐵 < 0 → ¬ 0 < 𝐵 ) ) |
| 18 |
16 7 17
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 < 0 → ¬ 0 < 𝐵 ) ) |
| 19 |
18
|
adantrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 0 < 𝐵 ) ) |
| 20 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( 0 < 𝐵 ↔ 0 < -∞ ) ) |
| 21 |
9 20
|
mtbiri |
⊢ ( 𝐵 = -∞ → ¬ 0 < 𝐵 ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 0 < 𝐵 ) |
| 23 |
22
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 0 < 𝐵 ) ) |
| 24 |
19 23
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 0 < 𝐵 ) ) |
| 25 |
15 24
|
orim12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵 ) ) ) |
| 26 |
|
ianor |
⊢ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ↔ ( ¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞ ) ) |
| 27 |
|
orcom |
⊢ ( ( ¬ 0 < 𝐵 ∨ ¬ 𝐴 = -∞ ) ↔ ( ¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵 ) ) |
| 28 |
26 27
|
bitri |
⊢ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ↔ ( ¬ 𝐴 = -∞ ∨ ¬ 0 < 𝐵 ) ) |
| 29 |
25 28
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) ) |
| 30 |
18
|
con2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 < 𝐵 → ¬ 𝐵 < 0 ) ) |
| 31 |
30
|
adantrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐵 < 0 ) ) |
| 32 |
|
pnfnlt |
⊢ ( 0 ∈ ℝ* → ¬ +∞ < 0 ) |
| 33 |
7 32
|
ax-mp |
⊢ ¬ +∞ < 0 |
| 34 |
|
simpr |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → 𝐵 = +∞ ) |
| 35 |
34
|
breq1d |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ( 𝐵 < 0 ↔ +∞ < 0 ) ) |
| 36 |
33 35
|
mtbiri |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 0 ) |
| 37 |
36
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 < 0 ) ) |
| 38 |
31 37
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐵 < 0 ) ) |
| 39 |
4
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 = -∞ → ¬ 𝐴 = +∞ ) ) |
| 40 |
39
|
adantld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 𝐴 = +∞ ) ) |
| 41 |
|
breq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 < 0 ↔ +∞ < 0 ) ) |
| 42 |
33 41
|
mtbiri |
⊢ ( 𝐴 = +∞ → ¬ 𝐴 < 0 ) |
| 43 |
42
|
con2i |
⊢ ( 𝐴 < 0 → ¬ 𝐴 = +∞ ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 𝐴 = +∞ ) |
| 45 |
44
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 𝐴 = +∞ ) ) |
| 46 |
40 45
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 𝐴 = +∞ ) ) |
| 47 |
38 46
|
orim12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞ ) ) ) |
| 48 |
|
ianor |
⊢ ( ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ↔ ( ¬ 𝐵 < 0 ∨ ¬ 𝐴 = +∞ ) ) |
| 49 |
47 48
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) |
| 50 |
29 49
|
jcad |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 51 |
|
ioran |
⊢ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ↔ ( ¬ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∧ ¬ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) |
| 52 |
50 51
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 53 |
21
|
con2i |
⊢ ( 0 < 𝐵 → ¬ 𝐵 = -∞ ) |
| 54 |
53
|
adantr |
⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐵 = -∞ ) |
| 55 |
54
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐵 = -∞ ) ) |
| 56 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
| 57 |
|
eqeq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 = -∞ ↔ +∞ = -∞ ) ) |
| 58 |
57
|
necon3bbid |
⊢ ( 𝐵 = +∞ → ( ¬ 𝐵 = -∞ ↔ +∞ ≠ -∞ ) ) |
| 59 |
56 58
|
mpbiri |
⊢ ( 𝐵 = +∞ → ¬ 𝐵 = -∞ ) |
| 60 |
59
|
adantl |
⊢ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 = -∞ ) |
| 61 |
60
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐵 = -∞ ) ) |
| 62 |
55 61
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐵 = -∞ ) ) |
| 63 |
11
|
adantl |
⊢ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 0 < 𝐴 ) |
| 64 |
63
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 0 < 𝐴 ) ) |
| 65 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
| 66 |
|
xrltnsym |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( 𝐴 < 0 → ¬ 0 < 𝐴 ) ) |
| 67 |
65 7 66
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 0 → ¬ 0 < 𝐴 ) ) |
| 68 |
67
|
adantrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 0 < 𝐴 ) ) |
| 69 |
64 68
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 0 < 𝐴 ) ) |
| 70 |
62 69
|
orim12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴 ) ) ) |
| 71 |
|
ianor |
⊢ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ↔ ( ¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞ ) ) |
| 72 |
|
orcom |
⊢ ( ( ¬ 0 < 𝐴 ∨ ¬ 𝐵 = -∞ ) ↔ ( ¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴 ) ) |
| 73 |
71 72
|
bitri |
⊢ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ↔ ( ¬ 𝐵 = -∞ ∨ ¬ 0 < 𝐴 ) ) |
| 74 |
70 73
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) |
| 75 |
42
|
adantl |
⊢ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐴 < 0 ) |
| 76 |
75
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) → ¬ 𝐴 < 0 ) ) |
| 77 |
67
|
con2d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 0 < 𝐴 → ¬ 𝐴 < 0 ) ) |
| 78 |
77
|
adantrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) → ¬ 𝐴 < 0 ) ) |
| 79 |
76 78
|
jaod |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) → ¬ 𝐴 < 0 ) ) |
| 80 |
|
breq1 |
⊢ ( 𝐵 = +∞ → ( 𝐵 < 0 ↔ +∞ < 0 ) ) |
| 81 |
33 80
|
mtbiri |
⊢ ( 𝐵 = +∞ → ¬ 𝐵 < 0 ) |
| 82 |
81
|
con2i |
⊢ ( 𝐵 < 0 → ¬ 𝐵 = +∞ ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) → ¬ 𝐵 = +∞ ) |
| 84 |
59
|
con2i |
⊢ ( 𝐵 = -∞ → ¬ 𝐵 = +∞ ) |
| 85 |
84
|
adantl |
⊢ ( ( 𝐴 < 0 ∧ 𝐵 = -∞ ) → ¬ 𝐵 = +∞ ) |
| 86 |
83 85
|
jaoi |
⊢ ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 𝐵 = +∞ ) |
| 87 |
86
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) → ¬ 𝐵 = +∞ ) ) |
| 88 |
79 87
|
orim12d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞ ) ) ) |
| 89 |
|
ianor |
⊢ ( ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ↔ ( ¬ 𝐴 < 0 ∨ ¬ 𝐵 = +∞ ) ) |
| 90 |
88 89
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
| 91 |
74 90
|
jcad |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 92 |
|
ioran |
⊢ ( ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ↔ ( ¬ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∧ ¬ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
| 93 |
91 92
|
imbitrrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 94 |
52 93
|
jcad |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 95 |
|
or4 |
⊢ ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ∨ ( ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 96 |
|
ioran |
⊢ ( ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ↔ ( ¬ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∧ ¬ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 97 |
94 95 96
|
3imtr4g |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) → ¬ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |