Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
⊢ 1 ∈ ℝ |
2 |
|
rexneg |
⊢ ( 1 ∈ ℝ → -𝑒 1 = - 1 ) |
3 |
1 2
|
ax-mp |
⊢ -𝑒 1 = - 1 |
4 |
3
|
oveq1i |
⊢ ( -𝑒 1 ·e 𝐴 ) = ( - 1 ·e 𝐴 ) |
5 |
|
1xr |
⊢ 1 ∈ ℝ* |
6 |
|
xmulneg1 |
⊢ ( ( 1 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -𝑒 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
7 |
5 6
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( -𝑒 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
8 |
4 7
|
eqtr3id |
⊢ ( 𝐴 ∈ ℝ* → ( - 1 ·e 𝐴 ) = -𝑒 ( 1 ·e 𝐴 ) ) |
9 |
|
xmulid2 |
⊢ ( 𝐴 ∈ ℝ* → ( 1 ·e 𝐴 ) = 𝐴 ) |
10 |
|
xnegeq |
⊢ ( ( 1 ·e 𝐴 ) = 𝐴 → -𝑒 ( 1 ·e 𝐴 ) = -𝑒 𝐴 ) |
11 |
9 10
|
syl |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 ( 1 ·e 𝐴 ) = -𝑒 𝐴 ) |
12 |
8 11
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ* → ( - 1 ·e 𝐴 ) = -𝑒 𝐴 ) |