Step |
Hyp |
Ref |
Expression |
1 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
2 |
1
|
oveq2i |
⊢ ( 𝐴 ·e -𝑒 +∞ ) = ( 𝐴 ·e -∞ ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → 𝐴 ∈ ℝ* ) |
4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
5 |
|
xmulneg2 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ·e -𝑒 +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
6 |
3 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e -𝑒 +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
7 |
|
xmulpnf1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e +∞ ) = +∞ ) |
8 |
|
xnegeq |
⊢ ( ( 𝐴 ·e +∞ ) = +∞ → -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 +∞ ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 +∞ ) |
10 |
9 1
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → -𝑒 ( 𝐴 ·e +∞ ) = -∞ ) |
11 |
6 10
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e -𝑒 +∞ ) = -∞ ) |
12 |
2 11
|
eqtr3id |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 < 𝐴 ) → ( 𝐴 ·e -∞ ) = -∞ ) |