| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ* ) |
| 2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 3 |
|
xmulneg1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -𝑒 𝐴 ·e +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
| 4 |
1 2 3
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
| 5 |
|
xnegcl |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) |
| 6 |
|
xlt0neg1 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |
| 7 |
6
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 0 < -𝑒 𝐴 ) |
| 8 |
|
xmulpnf1 |
⊢ ( ( -𝑒 𝐴 ∈ ℝ* ∧ 0 < -𝑒 𝐴 ) → ( -𝑒 𝐴 ·e +∞ ) = +∞ ) |
| 9 |
5 7 8
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e +∞ ) = +∞ ) |
| 10 |
4 9
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → -𝑒 ( 𝐴 ·e +∞ ) = +∞ ) |
| 11 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
| 12 |
10 11
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ) |
| 13 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ·e +∞ ) ∈ ℝ* ) |
| 14 |
1 2 13
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) ∈ ℝ* ) |
| 15 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 16 |
|
xneg11 |
⊢ ( ( ( 𝐴 ·e +∞ ) ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ↔ ( 𝐴 ·e +∞ ) = -∞ ) ) |
| 17 |
14 15 16
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ↔ ( 𝐴 ·e +∞ ) = -∞ ) ) |
| 18 |
12 17
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) |