Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 𝐴 ∈ ℝ* ) |
2 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
3 |
|
xmulneg1 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -𝑒 𝐴 ·e +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e +∞ ) = -𝑒 ( 𝐴 ·e +∞ ) ) |
5 |
|
xnegcl |
⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) |
6 |
|
xlt0neg1 |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 < 0 ↔ 0 < -𝑒 𝐴 ) ) |
7 |
6
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → 0 < -𝑒 𝐴 ) |
8 |
|
xmulpnf1 |
⊢ ( ( -𝑒 𝐴 ∈ ℝ* ∧ 0 < -𝑒 𝐴 ) → ( -𝑒 𝐴 ·e +∞ ) = +∞ ) |
9 |
5 7 8
|
syl2an2r |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 𝐴 ·e +∞ ) = +∞ ) |
10 |
4 9
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → -𝑒 ( 𝐴 ·e +∞ ) = +∞ ) |
11 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
12 |
10 11
|
eqtr4di |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ) |
13 |
|
xmulcl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 ·e +∞ ) ∈ ℝ* ) |
14 |
1 2 13
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) ∈ ℝ* ) |
15 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
16 |
|
xneg11 |
⊢ ( ( ( 𝐴 ·e +∞ ) ∈ ℝ* ∧ -∞ ∈ ℝ* ) → ( -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ↔ ( 𝐴 ·e +∞ ) = -∞ ) ) |
17 |
14 15 16
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( -𝑒 ( 𝐴 ·e +∞ ) = -𝑒 -∞ ↔ ( 𝐴 ·e +∞ ) = -∞ ) ) |
18 |
12 17
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 < 0 ) → ( 𝐴 ·e +∞ ) = -∞ ) |