| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
rexmul |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐴 ·e 1 ) = ( 𝐴 · 1 ) ) |
| 4 |
2 3
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ·e 1 ) = ( 𝐴 · 1 ) ) |
| 5 |
|
ax-1rid |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) |
| 6 |
4 5
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 7 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 8 |
|
0lt1 |
⊢ 0 < 1 |
| 9 |
|
xmulpnf2 |
⊢ ( ( 1 ∈ ℝ* ∧ 0 < 1 ) → ( +∞ ·e 1 ) = +∞ ) |
| 10 |
7 8 9
|
mp2an |
⊢ ( +∞ ·e 1 ) = +∞ |
| 11 |
|
oveq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 1 ) = ( +∞ ·e 1 ) ) |
| 12 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
| 13 |
10 11 12
|
3eqtr4a |
⊢ ( 𝐴 = +∞ → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 14 |
|
xmulmnf2 |
⊢ ( ( 1 ∈ ℝ* ∧ 0 < 1 ) → ( -∞ ·e 1 ) = -∞ ) |
| 15 |
7 8 14
|
mp2an |
⊢ ( -∞ ·e 1 ) = -∞ |
| 16 |
|
oveq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 1 ) = ( -∞ ·e 1 ) ) |
| 17 |
|
id |
⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) |
| 18 |
15 16 17
|
3eqtr4a |
⊢ ( 𝐴 = -∞ → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 19 |
6 13 18
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 ·e 1 ) = 𝐴 ) |
| 20 |
1 19
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ·e 1 ) = 𝐴 ) |