| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑥 = 𝐴 ) |
| 2 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = 0 ↔ 𝐴 = 0 ) ) |
| 3 |
|
simpr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 4 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = 0 ↔ 𝐵 = 0 ) ) |
| 5 |
2 4
|
orbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝐴 = 0 ∨ 𝐵 = 0 ) ) ) |
| 6 |
3
|
breq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 0 < 𝑦 ↔ 0 < 𝐵 ) ) |
| 7 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = +∞ ↔ 𝐴 = +∞ ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ) ) |
| 9 |
3
|
breq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 < 0 ↔ 𝐵 < 0 ) ) |
| 10 |
1
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 = -∞ ↔ 𝐴 = -∞ ) ) |
| 11 |
9 10
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) |
| 12 |
8 11
|
orbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ) ) |
| 13 |
1
|
breq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 0 < 𝑥 ↔ 0 < 𝐴 ) ) |
| 14 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = +∞ ↔ 𝐵 = +∞ ) ) |
| 15 |
13 14
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ) ) |
| 16 |
1
|
breq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 < 0 ↔ 𝐴 < 0 ) ) |
| 17 |
3
|
eqeq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑦 = -∞ ↔ 𝐵 = -∞ ) ) |
| 18 |
16 17
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) |
| 19 |
15 18
|
orbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) |
| 20 |
12 19
|
orbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) ) ) |
| 21 |
6 10
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ↔ ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ) ) |
| 22 |
9 7
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ↔ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) |
| 23 |
21 22
|
orbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ↔ ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ) ) |
| 24 |
13 17
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ↔ ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ) ) |
| 25 |
16 14
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ↔ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) |
| 26 |
24 25
|
orbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ↔ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) |
| 27 |
23 26
|
orbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) ↔ ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) ) ) |
| 28 |
|
oveq12 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑥 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) |
| 29 |
27 28
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) |
| 30 |
20 29
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) = if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) |
| 31 |
5 30
|
ifbieq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |
| 32 |
|
df-xmul |
⊢ ·e = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = +∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = -∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = +∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝑦 ∧ 𝑥 = -∞ ) ∨ ( 𝑦 < 0 ∧ 𝑥 = +∞ ) ) ∨ ( ( 0 < 𝑥 ∧ 𝑦 = -∞ ) ∨ ( 𝑥 < 0 ∧ 𝑦 = +∞ ) ) ) , -∞ , ( 𝑥 · 𝑦 ) ) ) ) ) |
| 33 |
|
c0ex |
⊢ 0 ∈ V |
| 34 |
|
pnfex |
⊢ +∞ ∈ V |
| 35 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 36 |
35
|
elexi |
⊢ -∞ ∈ V |
| 37 |
|
ovex |
⊢ ( 𝐴 · 𝐵 ) ∈ V |
| 38 |
36 37
|
ifex |
⊢ if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ∈ V |
| 39 |
34 38
|
ifex |
⊢ if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ∈ V |
| 40 |
33 39
|
ifex |
⊢ if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ∈ V |
| 41 |
31 32 40
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 ·e 𝐵 ) = if ( ( 𝐴 = 0 ∨ 𝐵 = 0 ) , 0 , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = +∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = -∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = +∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = -∞ ) ) ) , +∞ , if ( ( ( ( 0 < 𝐵 ∧ 𝐴 = -∞ ) ∨ ( 𝐵 < 0 ∧ 𝐴 = +∞ ) ) ∨ ( ( 0 < 𝐴 ∧ 𝐵 = -∞ ) ∨ ( 𝐴 < 0 ∧ 𝐵 = +∞ ) ) ) , -∞ , ( 𝐴 · 𝐵 ) ) ) ) ) |