Description: Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xnegcl | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr | ⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) | |
2 | rexneg | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) | |
3 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
4 | 2 3 | eqeltrd | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ ) |
5 | 4 | rexrd | ⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ* ) |
6 | xnegeq | ⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ ) | |
7 | xnegpnf | ⊢ -𝑒 +∞ = -∞ | |
8 | mnfxr | ⊢ -∞ ∈ ℝ* | |
9 | 7 8 | eqeltri | ⊢ -𝑒 +∞ ∈ ℝ* |
10 | 6 9 | eqeltrdi | ⊢ ( 𝐴 = +∞ → -𝑒 𝐴 ∈ ℝ* ) |
11 | xnegeq | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) | |
12 | xnegmnf | ⊢ -𝑒 -∞ = +∞ | |
13 | pnfxr | ⊢ +∞ ∈ ℝ* | |
14 | 12 13 | eqeltri | ⊢ -𝑒 -∞ ∈ ℝ* |
15 | 11 14 | eqeltrdi | ⊢ ( 𝐴 = -∞ → -𝑒 𝐴 ∈ ℝ* ) |
16 | 5 10 15 | 3jaoi | ⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → -𝑒 𝐴 ∈ ℝ* ) |
17 | 1 16 | sylbi | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 𝐴 ∈ ℝ* ) |