Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 = +∞ ↔ 𝐵 = +∞ ) ) |
2 |
|
eqeq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 = -∞ ↔ 𝐵 = -∞ ) ) |
3 |
|
negeq |
⊢ ( 𝐴 = 𝐵 → - 𝐴 = - 𝐵 ) |
4 |
2 3
|
ifbieq2d |
⊢ ( 𝐴 = 𝐵 → if ( 𝐴 = -∞ , +∞ , - 𝐴 ) = if ( 𝐵 = -∞ , +∞ , - 𝐵 ) ) |
5 |
1 4
|
ifbieq2d |
⊢ ( 𝐴 = 𝐵 → if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) = if ( 𝐵 = +∞ , -∞ , if ( 𝐵 = -∞ , +∞ , - 𝐵 ) ) ) |
6 |
|
df-xneg |
⊢ -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) |
7 |
|
df-xneg |
⊢ -𝑒 𝐵 = if ( 𝐵 = +∞ , -∞ , if ( 𝐵 = -∞ , +∞ , - 𝐵 ) ) |
8 |
5 6 7
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → -𝑒 𝐴 = -𝑒 𝐵 ) |