Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xnegex | ⊢ -𝑒 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg | ⊢ -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) | |
2 | mnfxr | ⊢ -∞ ∈ ℝ* | |
3 | 2 | elexi | ⊢ -∞ ∈ V |
4 | pnfex | ⊢ +∞ ∈ V | |
5 | negex | ⊢ - 𝐴 ∈ V | |
6 | 4 5 | ifex | ⊢ if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ∈ V |
7 | 3 6 | ifex | ⊢ if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) ∈ V |
8 | 1 7 | eqeltri | ⊢ -𝑒 𝐴 ∈ V |