Metamath Proof Explorer


Theorem xnegex

Description: A negative extended real exists as a set. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xnegex -𝑒 𝐴 ∈ V

Proof

Step Hyp Ref Expression
1 df-xneg -𝑒 𝐴 = if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) )
2 mnfxr -∞ ∈ ℝ*
3 2 elexi -∞ ∈ V
4 pnfex +∞ ∈ V
5 negex - 𝐴 ∈ V
6 4 5 ifex if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ∈ V
7 3 6 ifex if ( 𝐴 = +∞ , -∞ , if ( 𝐴 = -∞ , +∞ , - 𝐴 ) ) ∈ V
8 1 7 eqeltri -𝑒 𝐴 ∈ V