Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
2 |
|
rexneg |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |
3 |
2
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( 𝐴 +𝑒 - 𝐴 ) ) |
4 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
5 |
|
rexadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( 𝐴 +𝑒 - 𝐴 ) = ( 𝐴 + - 𝐴 ) ) |
6 |
4 5
|
mpdan |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 - 𝐴 ) = ( 𝐴 + - 𝐴 ) ) |
7 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
8 |
7
|
negidd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + - 𝐴 ) = 0 ) |
9 |
3 6 8
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
10 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
11 |
|
xnegeq |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ ) |
12 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
13 |
11 12
|
eqtrdi |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -∞ ) |
14 |
10 13
|
oveq12d |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( +∞ +𝑒 -∞ ) ) |
15 |
|
pnfaddmnf |
⊢ ( +∞ +𝑒 -∞ ) = 0 |
16 |
14 15
|
eqtrdi |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
17 |
|
id |
⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) |
18 |
|
xnegeq |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) |
19 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
20 |
18 19
|
eqtrdi |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = +∞ ) |
21 |
17 20
|
oveq12d |
⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( -∞ +𝑒 +∞ ) ) |
22 |
|
mnfaddpnf |
⊢ ( -∞ +𝑒 +∞ ) = 0 |
23 |
21 22
|
eqtrdi |
⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
24 |
9 16 23
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
25 |
1 24
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |