| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
| 2 |
|
rexneg |
⊢ ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 ) |
| 3 |
2
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( 𝐴 +𝑒 - 𝐴 ) ) |
| 4 |
|
renegcl |
⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) |
| 5 |
|
rexadd |
⊢ ( ( 𝐴 ∈ ℝ ∧ - 𝐴 ∈ ℝ ) → ( 𝐴 +𝑒 - 𝐴 ) = ( 𝐴 + - 𝐴 ) ) |
| 6 |
4 5
|
mpdan |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 - 𝐴 ) = ( 𝐴 + - 𝐴 ) ) |
| 7 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 8 |
7
|
negidd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + - 𝐴 ) = 0 ) |
| 9 |
3 6 8
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 10 |
|
id |
⊢ ( 𝐴 = +∞ → 𝐴 = +∞ ) |
| 11 |
|
xnegeq |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -𝑒 +∞ ) |
| 12 |
|
xnegpnf |
⊢ -𝑒 +∞ = -∞ |
| 13 |
11 12
|
eqtrdi |
⊢ ( 𝐴 = +∞ → -𝑒 𝐴 = -∞ ) |
| 14 |
10 13
|
oveq12d |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( +∞ +𝑒 -∞ ) ) |
| 15 |
|
pnfaddmnf |
⊢ ( +∞ +𝑒 -∞ ) = 0 |
| 16 |
14 15
|
eqtrdi |
⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 17 |
|
id |
⊢ ( 𝐴 = -∞ → 𝐴 = -∞ ) |
| 18 |
|
xnegeq |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = -𝑒 -∞ ) |
| 19 |
|
xnegmnf |
⊢ -𝑒 -∞ = +∞ |
| 20 |
18 19
|
eqtrdi |
⊢ ( 𝐴 = -∞ → -𝑒 𝐴 = +∞ ) |
| 21 |
17 20
|
oveq12d |
⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = ( -∞ +𝑒 +∞ ) ) |
| 22 |
|
mnfaddpnf |
⊢ ( -∞ +𝑒 +∞ ) = 0 |
| 23 |
21 22
|
eqtrdi |
⊢ ( 𝐴 = -∞ → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 24 |
9 16 23
|
3jaoi |
⊢ ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |
| 25 |
1 24
|
sylbi |
⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 +𝑒 -𝑒 𝐴 ) = 0 ) |