Metamath Proof Explorer


Theorem xnegnegd

Description: Extended real version of negnegd . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis xnegnegd.1 ( 𝜑𝐴 ∈ ℝ* )
Assertion xnegnegd ( 𝜑 → -𝑒 -𝑒 𝐴 = 𝐴 )

Proof

Step Hyp Ref Expression
1 xnegnegd.1 ( 𝜑𝐴 ∈ ℝ* )
2 xnegneg ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 )
3 1 2 syl ( 𝜑 → -𝑒 -𝑒 𝐴 = 𝐴 )