Description: Extended real version of negneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xnegnegi.1 | ⊢ 𝐴 ∈ ℝ* | |
| Assertion | xnegnegi | ⊢ -𝑒 -𝑒 𝐴 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xnegnegi.1 | ⊢ 𝐴 ∈ ℝ* | |
| 2 | xnegneg | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) | |
| 3 | 1 2 | ax-mp | ⊢ -𝑒 -𝑒 𝐴 = 𝐴 |