Metamath Proof Explorer


Theorem xnegnegi

Description: Extended real version of negneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis xnegnegi.1 𝐴 ∈ ℝ*
Assertion xnegnegi -𝑒 -𝑒 𝐴 = 𝐴

Proof

Step Hyp Ref Expression
1 xnegnegi.1 𝐴 ∈ ℝ*
2 xnegneg ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 )
3 1 2 ax-mp -𝑒 -𝑒 𝐴 = 𝐴