Description: Extended real version of negneg . (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xnegnegi.1 | ⊢ 𝐴 ∈ ℝ* | |
Assertion | xnegnegi | ⊢ -𝑒 -𝑒 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xnegnegi.1 | ⊢ 𝐴 ∈ ℝ* | |
2 | xnegneg | ⊢ ( 𝐴 ∈ ℝ* → -𝑒 -𝑒 𝐴 = 𝐴 ) | |
3 | 1 2 | ax-mp | ⊢ -𝑒 -𝑒 𝐴 = 𝐴 |