Metamath Proof Explorer


Theorem xnegrecl

Description: The extended real negative of a real number is real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion xnegrecl ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 rexneg ( 𝐴 ∈ ℝ → -𝑒 𝐴 = - 𝐴 )
2 renegcl ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ )
3 1 2 eqeltrd ( 𝐴 ∈ ℝ → -𝑒 𝐴 ∈ ℝ )