Metamath Proof Explorer


Theorem xnn0lem1lt

Description: Extended nonnegative integer ordering relation. (Contributed by Thierry Arnoux, 30-Jul-2023)

Ref Expression
Assertion xnn0lem1lt ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )

Proof

Step Hyp Ref Expression
1 nn0lem1lt ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )
2 1 adantlr ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )
3 nn0re ( 𝑀 ∈ ℕ0𝑀 ∈ ℝ )
4 3 rexrd ( 𝑀 ∈ ℕ0𝑀 ∈ ℝ* )
5 pnfge ( 𝑀 ∈ ℝ*𝑀 ≤ +∞ )
6 4 5 syl ( 𝑀 ∈ ℕ0𝑀 ≤ +∞ )
7 6 ad2antrr ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑀 ≤ +∞ )
8 simpll ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 )
9 peano2rem ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ )
10 ltpnf ( ( 𝑀 − 1 ) ∈ ℝ → ( 𝑀 − 1 ) < +∞ )
11 8 3 9 10 4syl ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 − 1 ) < +∞ )
12 7 11 2thd ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ +∞ ↔ ( 𝑀 − 1 ) < +∞ ) )
13 xnn0nnn0pnf ( ( 𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 = +∞ )
14 13 adantll ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 = +∞ )
15 14 breq2d ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀𝑁𝑀 ≤ +∞ ) )
16 14 breq2d ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 − 1 ) < 𝑁 ↔ ( 𝑀 − 1 ) < +∞ ) )
17 12 15 16 3bitr4d ( ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )
18 2 17 pm2.61dan ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0* ) → ( 𝑀𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) )