Step |
Hyp |
Ref |
Expression |
1 |
|
nn0lem1lt |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |
2 |
1
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |
3 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
4 |
3
|
rexrd |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ* ) |
5 |
|
pnfge |
⊢ ( 𝑀 ∈ ℝ* → 𝑀 ≤ +∞ ) |
6 |
4 5
|
syl |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ≤ +∞ ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑀 ≤ +∞ ) |
8 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
9 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
10 |
|
ltpnf |
⊢ ( ( 𝑀 − 1 ) ∈ ℝ → ( 𝑀 − 1 ) < +∞ ) |
11 |
8 3 9 10
|
4syl |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 − 1 ) < +∞ ) |
12 |
7 11
|
2thd |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ +∞ ↔ ( 𝑀 − 1 ) < +∞ ) ) |
13 |
|
xnn0nnn0pnf |
⊢ ( ( 𝑁 ∈ ℕ0* ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 = +∞ ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → 𝑁 = +∞ ) |
15 |
14
|
breq2d |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ 𝑀 ≤ +∞ ) ) |
16 |
14
|
breq2d |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 − 1 ) < 𝑁 ↔ ( 𝑀 − 1 ) < +∞ ) ) |
17 |
12 15 16
|
3bitr4d |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) ∧ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |
18 |
2 17
|
pm2.61dan |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0* ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑀 − 1 ) < 𝑁 ) ) |