Metamath Proof Explorer


Theorem xnn0lenn0nn0

Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021)

Ref Expression
Assertion xnn0lenn0nn0 ( ( 𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁 ) → 𝑀 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 elxnn0 ( 𝑀 ∈ ℕ0* ↔ ( 𝑀 ∈ ℕ0𝑀 = +∞ ) )
2 2a1 ( 𝑀 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( 𝑀𝑁𝑀 ∈ ℕ0 ) ) )
3 breq1 ( 𝑀 = +∞ → ( 𝑀𝑁 ↔ +∞ ≤ 𝑁 ) )
4 3 adantr ( ( 𝑀 = +∞ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ +∞ ≤ 𝑁 ) )
5 nn0re ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ )
6 5 rexrd ( 𝑁 ∈ ℕ0𝑁 ∈ ℝ* )
7 xgepnf ( 𝑁 ∈ ℝ* → ( +∞ ≤ 𝑁𝑁 = +∞ ) )
8 6 7 syl ( 𝑁 ∈ ℕ0 → ( +∞ ≤ 𝑁𝑁 = +∞ ) )
9 pnfnre +∞ ∉ ℝ
10 eleq1 ( 𝑁 = +∞ → ( 𝑁 ∈ ℕ0 ↔ +∞ ∈ ℕ0 ) )
11 nn0re ( +∞ ∈ ℕ0 → +∞ ∈ ℝ )
12 elnelall ( +∞ ∈ ℝ → ( +∞ ∉ ℝ → 𝑀 ∈ ℕ0 ) )
13 11 12 syl ( +∞ ∈ ℕ0 → ( +∞ ∉ ℝ → 𝑀 ∈ ℕ0 ) )
14 10 13 syl6bi ( 𝑁 = +∞ → ( 𝑁 ∈ ℕ0 → ( +∞ ∉ ℝ → 𝑀 ∈ ℕ0 ) ) )
15 14 com13 ( +∞ ∉ ℝ → ( 𝑁 ∈ ℕ0 → ( 𝑁 = +∞ → 𝑀 ∈ ℕ0 ) ) )
16 9 15 ax-mp ( 𝑁 ∈ ℕ0 → ( 𝑁 = +∞ → 𝑀 ∈ ℕ0 ) )
17 8 16 sylbid ( 𝑁 ∈ ℕ0 → ( +∞ ≤ 𝑁𝑀 ∈ ℕ0 ) )
18 17 adantl ( ( 𝑀 = +∞ ∧ 𝑁 ∈ ℕ0 ) → ( +∞ ≤ 𝑁𝑀 ∈ ℕ0 ) )
19 4 18 sylbid ( ( 𝑀 = +∞ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀𝑁𝑀 ∈ ℕ0 ) )
20 19 ex ( 𝑀 = +∞ → ( 𝑁 ∈ ℕ0 → ( 𝑀𝑁𝑀 ∈ ℕ0 ) ) )
21 2 20 jaoi ( ( 𝑀 ∈ ℕ0𝑀 = +∞ ) → ( 𝑁 ∈ ℕ0 → ( 𝑀𝑁𝑀 ∈ ℕ0 ) ) )
22 1 21 sylbi ( 𝑀 ∈ ℕ0* → ( 𝑁 ∈ ℕ0 → ( 𝑀𝑁𝑀 ∈ ℕ0 ) ) )
23 22 3imp ( ( 𝑀 ∈ ℕ0*𝑁 ∈ ℕ0𝑀𝑁 ) → 𝑀 ∈ ℕ0 )