Step |
Hyp |
Ref |
Expression |
1 |
|
elxnn0 |
⊢ ( 𝑁 ∈ ℕ0* ↔ ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) ) |
2 |
|
nn0n0n1ge2b |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
3 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
4 |
|
nn0nepnf |
⊢ ( 0 ∈ ℕ0 → 0 ≠ +∞ ) |
5 |
3 4
|
ax-mp |
⊢ 0 ≠ +∞ |
6 |
5
|
necomi |
⊢ +∞ ≠ 0 |
7 |
|
neeq1 |
⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 0 ↔ +∞ ≠ 0 ) ) |
8 |
6 7
|
mpbiri |
⊢ ( 𝑁 = +∞ → 𝑁 ≠ 0 ) |
9 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
10 |
|
nn0nepnf |
⊢ ( 1 ∈ ℕ0 → 1 ≠ +∞ ) |
11 |
9 10
|
ax-mp |
⊢ 1 ≠ +∞ |
12 |
11
|
necomi |
⊢ +∞ ≠ 1 |
13 |
|
neeq1 |
⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 1 ↔ +∞ ≠ 1 ) ) |
14 |
12 13
|
mpbiri |
⊢ ( 𝑁 = +∞ → 𝑁 ≠ 1 ) |
15 |
8 14
|
jca |
⊢ ( 𝑁 = +∞ → ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ) |
16 |
|
2re |
⊢ 2 ∈ ℝ |
17 |
16
|
rexri |
⊢ 2 ∈ ℝ* |
18 |
|
pnfge |
⊢ ( 2 ∈ ℝ* → 2 ≤ +∞ ) |
19 |
17 18
|
ax-mp |
⊢ 2 ≤ +∞ |
20 |
|
breq2 |
⊢ ( 𝑁 = +∞ → ( 2 ≤ 𝑁 ↔ 2 ≤ +∞ ) ) |
21 |
19 20
|
mpbiri |
⊢ ( 𝑁 = +∞ → 2 ≤ 𝑁 ) |
22 |
15 21
|
2thd |
⊢ ( 𝑁 = +∞ → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
23 |
2 22
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ0 ∨ 𝑁 = +∞ ) → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
24 |
1 23
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0* → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |