Metamath Proof Explorer


Theorem xnn0nemnf

Description: No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion xnn0nemnf ( 𝐴 ∈ ℕ0*𝐴 ≠ -∞ )

Proof

Step Hyp Ref Expression
1 elxnn0 ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0𝐴 = +∞ ) )
2 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
3 2 renemnfd ( 𝐴 ∈ ℕ0𝐴 ≠ -∞ )
4 pnfnemnf +∞ ≠ -∞
5 neeq1 ( 𝐴 = +∞ → ( 𝐴 ≠ -∞ ↔ +∞ ≠ -∞ ) )
6 4 5 mpbiri ( 𝐴 = +∞ → 𝐴 ≠ -∞ )
7 3 6 jaoi ( ( 𝐴 ∈ ℕ0𝐴 = +∞ ) → 𝐴 ≠ -∞ )
8 1 7 sylbi ( 𝐴 ∈ ℕ0*𝐴 ≠ -∞ )