| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxnn0 | ⊢ ( 𝐴  ∈  ℕ0*  ↔  ( 𝐴  ∈  ℕ0  ∨  𝐴  =  +∞ ) ) | 
						
							| 2 |  | elxnn0 | ⊢ ( 𝐵  ∈  ℕ0*  ↔  ( 𝐵  ∈  ℕ0  ∨  𝐵  =  +∞ ) ) | 
						
							| 3 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | rexadd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +𝑒  𝐵 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +𝑒  𝐵 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 7 | 6 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  ( 𝐴  +  𝐵 )  =  0 ) ) | 
						
							| 8 |  | nn0ge0 | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 ) | 
						
							| 9 | 3 8 | jca | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 10 |  | nn0ge0 | ⊢ ( 𝐵  ∈  ℕ0  →  0  ≤  𝐵 ) | 
						
							| 11 | 4 10 | jca | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) ) | 
						
							| 12 |  | add20 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  ≤  𝐵 ) )  →  ( ( 𝐴  +  𝐵 )  =  0  ↔  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 13 | 9 11 12 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  +  𝐵 )  =  0  ↔  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 14 | 7 13 | bitrd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 15 | 14 | biimpd | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 16 | 15 | expcom | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐴  ∈  ℕ0  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝐵  =  +∞  →  ( 𝐴  +𝑒  𝐵 )  =  ( 𝐴  +𝑒  +∞ ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝐵  =  +∞  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  ( 𝐴  +𝑒  +∞ )  =  0 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐵  =  +∞  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  ( 𝐴  +𝑒  +∞ )  =  0 ) ) | 
						
							| 20 |  | nn0xnn0 | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℕ0* ) | 
						
							| 21 |  | xnn0xrnemnf | ⊢ ( 𝐴  ∈  ℕ0*  →  ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ ) ) | 
						
							| 22 |  | xaddpnf1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ )  →  ( 𝐴  +𝑒  +∞ )  =  +∞ ) | 
						
							| 23 | 20 21 22 | 3syl | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  +𝑒  +∞ )  =  +∞ ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐵  =  +∞  ∧  𝐴  ∈  ℕ0 )  →  ( 𝐴  +𝑒  +∞ )  =  +∞ ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( ( 𝐵  =  +∞  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  +∞ )  =  0  ↔  +∞  =  0 ) ) | 
						
							| 26 | 19 25 | bitrd | ⊢ ( ( 𝐵  =  +∞  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  +∞  =  0 ) ) | 
						
							| 27 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 28 |  | renepnf | ⊢ ( 0  ∈  ℝ  →  0  ≠  +∞ ) | 
						
							| 29 | 27 28 | ax-mp | ⊢ 0  ≠  +∞ | 
						
							| 30 | 29 | nesymi | ⊢ ¬  +∞  =  0 | 
						
							| 31 | 30 | pm2.21i | ⊢ ( +∞  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) | 
						
							| 32 | 26 31 | biimtrdi | ⊢ ( ( 𝐵  =  +∞  ∧  𝐴  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 33 | 32 | ex | ⊢ ( 𝐵  =  +∞  →  ( 𝐴  ∈  ℕ0  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 34 | 16 33 | jaoi | ⊢ ( ( 𝐵  ∈  ℕ0  ∨  𝐵  =  +∞ )  →  ( 𝐴  ∈  ℕ0  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 35 | 2 34 | sylbi | ⊢ ( 𝐵  ∈  ℕ0*  →  ( 𝐴  ∈  ℕ0  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐵  ∈  ℕ0*  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 37 |  | oveq1 | ⊢ ( 𝐴  =  +∞  →  ( 𝐴  +𝑒  𝐵 )  =  ( +∞  +𝑒  𝐵 ) ) | 
						
							| 38 | 37 | eqeq1d | ⊢ ( 𝐴  =  +∞  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  ( +∞  +𝑒  𝐵 )  =  0 ) ) | 
						
							| 39 |  | xnn0xrnemnf | ⊢ ( 𝐵  ∈  ℕ0*  →  ( 𝐵  ∈  ℝ*  ∧  𝐵  ≠  -∞ ) ) | 
						
							| 40 |  | xaddpnf2 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐵  ≠  -∞ )  →  ( +∞  +𝑒  𝐵 )  =  +∞ ) | 
						
							| 41 | 39 40 | syl | ⊢ ( 𝐵  ∈  ℕ0*  →  ( +∞  +𝑒  𝐵 )  =  +∞ ) | 
						
							| 42 | 41 | eqeq1d | ⊢ ( 𝐵  ∈  ℕ0*  →  ( ( +∞  +𝑒  𝐵 )  =  0  ↔  +∞  =  0 ) ) | 
						
							| 43 | 38 42 | sylan9bb | ⊢ ( ( 𝐴  =  +∞  ∧  𝐵  ∈  ℕ0* )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  +∞  =  0 ) ) | 
						
							| 44 | 43 31 | biimtrdi | ⊢ ( ( 𝐴  =  +∞  ∧  𝐵  ∈  ℕ0* )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝐴  =  +∞  →  ( 𝐵  ∈  ℕ0*  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 46 | 36 45 | jaoi | ⊢ ( ( 𝐴  ∈  ℕ0  ∨  𝐴  =  +∞ )  →  ( 𝐵  ∈  ℕ0*  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 47 | 1 46 | sylbi | ⊢ ( 𝐴  ∈  ℕ0*  →  ( 𝐵  ∈  ℕ0*  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) ) | 
						
							| 48 | 47 | imp | ⊢ ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  →  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) | 
						
							| 49 |  | oveq12 | ⊢ ( ( 𝐴  =  0  ∧  𝐵  =  0 )  →  ( 𝐴  +𝑒  𝐵 )  =  ( 0  +𝑒  0 ) ) | 
						
							| 50 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 51 |  | xaddrid | ⊢ ( 0  ∈  ℝ*  →  ( 0  +𝑒  0 )  =  0 ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ ( 0  +𝑒  0 )  =  0 | 
						
							| 53 | 49 52 | eqtrdi | ⊢ ( ( 𝐴  =  0  ∧  𝐵  =  0 )  →  ( 𝐴  +𝑒  𝐵 )  =  0 ) | 
						
							| 54 | 48 53 | impbid1 | ⊢ ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( ( 𝐴  +𝑒  𝐵 )  =  0  ↔  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) ) |