| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0addcl | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +  𝐵 )  ∈  ℕ0 ) | 
						
							| 2 | 1 | nn0xnn0d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +  𝐵 )  ∈  ℕ0* ) | 
						
							| 3 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | nn0re | ⊢ ( 𝐵  ∈  ℕ0  →  𝐵  ∈  ℝ ) | 
						
							| 5 |  | rexadd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +𝑒  𝐵 )  =  ( 𝐴  +  𝐵 ) ) | 
						
							| 6 | 5 | eleq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0*  ↔  ( 𝐴  +  𝐵 )  ∈  ℕ0* ) ) | 
						
							| 7 | 3 4 6 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0*  ↔  ( 𝐴  +  𝐵 )  ∈  ℕ0* ) ) | 
						
							| 8 | 2 7 | mpbird | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0* ) | 
						
							| 9 | 8 | a1d | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0* ) ) | 
						
							| 10 |  | ianor | ⊢ ( ¬  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  ↔  ( ¬  𝐴  ∈  ℕ0  ∨  ¬  𝐵  ∈  ℕ0 ) ) | 
						
							| 11 |  | xnn0nnn0pnf | ⊢ ( ( 𝐴  ∈  ℕ0*  ∧  ¬  𝐴  ∈  ℕ0 )  →  𝐴  =  +∞ ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝐴  =  +∞  →  ( 𝐴  +𝑒  𝐵 )  =  ( +∞  +𝑒  𝐵 ) ) | 
						
							| 13 |  | xnn0xrnemnf | ⊢ ( 𝐵  ∈  ℕ0*  →  ( 𝐵  ∈  ℝ*  ∧  𝐵  ≠  -∞ ) ) | 
						
							| 14 |  | xaddpnf2 | ⊢ ( ( 𝐵  ∈  ℝ*  ∧  𝐵  ≠  -∞ )  →  ( +∞  +𝑒  𝐵 )  =  +∞ ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝐵  ∈  ℕ0*  →  ( +∞  +𝑒  𝐵 )  =  +∞ ) | 
						
							| 16 | 12 15 | sylan9eq | ⊢ ( ( 𝐴  =  +∞  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝐴  =  +∞  →  ( 𝐵  ∈  ℕ0*  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) | 
						
							| 18 | 11 17 | syl | ⊢ ( ( 𝐴  ∈  ℕ0*  ∧  ¬  𝐴  ∈  ℕ0 )  →  ( 𝐵  ∈  ℕ0*  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) | 
						
							| 19 | 18 | expcom | ⊢ ( ¬  𝐴  ∈  ℕ0  →  ( 𝐴  ∈  ℕ0*  →  ( 𝐵  ∈  ℕ0*  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) ) | 
						
							| 20 | 19 | impd | ⊢ ( ¬  𝐴  ∈  ℕ0  →  ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) | 
						
							| 21 |  | xnn0nnn0pnf | ⊢ ( ( 𝐵  ∈  ℕ0*  ∧  ¬  𝐵  ∈  ℕ0 )  →  𝐵  =  +∞ ) | 
						
							| 22 |  | oveq2 | ⊢ ( 𝐵  =  +∞  →  ( 𝐴  +𝑒  𝐵 )  =  ( 𝐴  +𝑒  +∞ ) ) | 
						
							| 23 |  | xnn0xrnemnf | ⊢ ( 𝐴  ∈  ℕ0*  →  ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ ) ) | 
						
							| 24 |  | xaddpnf1 | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ )  →  ( 𝐴  +𝑒  +∞ )  =  +∞ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( 𝐴  ∈  ℕ0*  →  ( 𝐴  +𝑒  +∞ )  =  +∞ ) | 
						
							| 26 | 22 25 | sylan9eq | ⊢ ( ( 𝐵  =  +∞  ∧  𝐴  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝐵  =  +∞  →  ( 𝐴  ∈  ℕ0*  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) | 
						
							| 28 | 21 27 | syl | ⊢ ( ( 𝐵  ∈  ℕ0*  ∧  ¬  𝐵  ∈  ℕ0 )  →  ( 𝐴  ∈  ℕ0*  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) | 
						
							| 29 | 28 | expcom | ⊢ ( ¬  𝐵  ∈  ℕ0  →  ( 𝐵  ∈  ℕ0*  →  ( 𝐴  ∈  ℕ0*  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) ) | 
						
							| 30 | 29 | impcomd | ⊢ ( ¬  𝐵  ∈  ℕ0  →  ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) | 
						
							| 31 | 20 30 | jaoi | ⊢ ( ( ¬  𝐴  ∈  ℕ0  ∨  ¬  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( ( ¬  𝐴  ∈  ℕ0  ∨  ¬  𝐵  ∈  ℕ0 )  ∧  ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* ) )  →  ( 𝐴  +𝑒  𝐵 )  =  +∞ ) | 
						
							| 33 |  | pnf0xnn0 | ⊢ +∞  ∈  ℕ0* | 
						
							| 34 | 32 33 | eqeltrdi | ⊢ ( ( ( ¬  𝐴  ∈  ℕ0  ∨  ¬  𝐵  ∈  ℕ0 )  ∧  ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* ) )  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0* ) | 
						
							| 35 | 34 | ex | ⊢ ( ( ¬  𝐴  ∈  ℕ0  ∨  ¬  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0* ) ) | 
						
							| 36 | 10 35 | sylbi | ⊢ ( ¬  ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0* ) ) | 
						
							| 37 | 9 36 | pm2.61i | ⊢ ( ( 𝐴  ∈  ℕ0*  ∧  𝐵  ∈  ℕ0* )  →  ( 𝐴  +𝑒  𝐵 )  ∈  ℕ0* ) |