Metamath Proof Explorer


Theorem xnn0xr

Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion xnn0xr ( 𝐴 ∈ ℕ0*𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 elxnn0 ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0𝐴 = +∞ ) )
2 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
3 2 rexrd ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ* )
4 pnfxr +∞ ∈ ℝ*
5 eleq1 ( 𝐴 = +∞ → ( 𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ* ) )
6 4 5 mpbiri ( 𝐴 = +∞ → 𝐴 ∈ ℝ* )
7 3 6 jaoi ( ( 𝐴 ∈ ℕ0𝐴 = +∞ ) → 𝐴 ∈ ℝ* )
8 1 7 sylbi ( 𝐴 ∈ ℕ0*𝐴 ∈ ℝ* )