Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | xnn0xr | ⊢ ( 𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 | ⊢ ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) ) | |
2 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
3 | 2 | rexrd | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ* ) |
4 | pnfxr | ⊢ +∞ ∈ ℝ* | |
5 | eleq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ* ) ) | |
6 | 4 5 | mpbiri | ⊢ ( 𝐴 = +∞ → 𝐴 ∈ ℝ* ) |
7 | 3 6 | jaoi | ⊢ ( ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) → 𝐴 ∈ ℝ* ) |
8 | 1 7 | sylbi | ⊢ ( 𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ* ) |