Metamath Proof Explorer


Theorem xnn0xrge0

Description: An extended nonnegative integer is an extended nonnegative real. (Contributed by AV, 10-Dec-2020)

Ref Expression
Assertion xnn0xrge0 ( 𝐴 ∈ ℕ0*𝐴 ∈ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 elxnn0 ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0𝐴 = +∞ ) )
2 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
3 2 rexrd ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ* )
4 nn0ge0 ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 )
5 elxrge0 ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) )
6 3 4 5 sylanbrc ( 𝐴 ∈ ℕ0𝐴 ∈ ( 0 [,] +∞ ) )
7 0xr 0 ∈ ℝ*
8 pnfxr +∞ ∈ ℝ*
9 0lepnf 0 ≤ +∞
10 ubicc2 ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) )
11 7 8 9 10 mp3an +∞ ∈ ( 0 [,] +∞ )
12 eleq1 ( 𝐴 = +∞ → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ +∞ ∈ ( 0 [,] +∞ ) ) )
13 11 12 mpbiri ( 𝐴 = +∞ → 𝐴 ∈ ( 0 [,] +∞ ) )
14 6 13 jaoi ( ( 𝐴 ∈ ℕ0𝐴 = +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) )
15 1 14 sylbi ( 𝐴 ∈ ℕ0*𝐴 ∈ ( 0 [,] +∞ ) )