| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxnn0 | ⊢ ( 𝐴  ∈  ℕ0*  ↔  ( 𝐴  ∈  ℕ0  ∨  𝐴  =  +∞ ) ) | 
						
							| 2 |  | nn0re | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ ) | 
						
							| 3 | 2 | rexrd | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ℝ* ) | 
						
							| 4 |  | nn0ge0 | ⊢ ( 𝐴  ∈  ℕ0  →  0  ≤  𝐴 ) | 
						
							| 5 |  | elxrge0 | ⊢ ( 𝐴  ∈  ( 0 [,] +∞ )  ↔  ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴 ) ) | 
						
							| 6 | 3 4 5 | sylanbrc | ⊢ ( 𝐴  ∈  ℕ0  →  𝐴  ∈  ( 0 [,] +∞ ) ) | 
						
							| 7 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 8 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 9 |  | 0lepnf | ⊢ 0  ≤  +∞ | 
						
							| 10 |  | ubicc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  0  ≤  +∞ )  →  +∞  ∈  ( 0 [,] +∞ ) ) | 
						
							| 11 | 7 8 9 10 | mp3an | ⊢ +∞  ∈  ( 0 [,] +∞ ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝐴  =  +∞  →  ( 𝐴  ∈  ( 0 [,] +∞ )  ↔  +∞  ∈  ( 0 [,] +∞ ) ) ) | 
						
							| 13 | 11 12 | mpbiri | ⊢ ( 𝐴  =  +∞  →  𝐴  ∈  ( 0 [,] +∞ ) ) | 
						
							| 14 | 6 13 | jaoi | ⊢ ( ( 𝐴  ∈  ℕ0  ∨  𝐴  =  +∞ )  →  𝐴  ∈  ( 0 [,] +∞ ) ) | 
						
							| 15 | 1 14 | sylbi | ⊢ ( 𝐴  ∈  ℕ0*  →  𝐴  ∈  ( 0 [,] +∞ ) ) |