Step |
Hyp |
Ref |
Expression |
1 |
|
elxnn0 |
⊢ ( 𝐴 ∈ ℕ0* ↔ ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) ) |
2 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
3 |
2
|
rexrd |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ* ) |
4 |
|
nn0ge0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) |
5 |
|
elxrge0 |
⊢ ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) ) |
6 |
3 4 5
|
sylanbrc |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ( 0 [,] +∞ ) ) |
7 |
|
0xr |
⊢ 0 ∈ ℝ* |
8 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
9 |
|
0lepnf |
⊢ 0 ≤ +∞ |
10 |
|
ubicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞ ) → +∞ ∈ ( 0 [,] +∞ ) ) |
11 |
7 8 9 10
|
mp3an |
⊢ +∞ ∈ ( 0 [,] +∞ ) |
12 |
|
eleq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 ∈ ( 0 [,] +∞ ) ↔ +∞ ∈ ( 0 [,] +∞ ) ) ) |
13 |
11 12
|
mpbiri |
⊢ ( 𝐴 = +∞ → 𝐴 ∈ ( 0 [,] +∞ ) ) |
14 |
6 13
|
jaoi |
⊢ ( ( 𝐴 ∈ ℕ0 ∨ 𝐴 = +∞ ) → 𝐴 ∈ ( 0 [,] +∞ ) ) |
15 |
1 14
|
sylbi |
⊢ ( 𝐴 ∈ ℕ0* → 𝐴 ∈ ( 0 [,] +∞ ) ) |