| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xor3 | ⊢ ( ¬  ( 𝜑  ↔  ( 𝜓  ⊻  𝜒 ) )  ↔  ( 𝜑  ↔  ¬  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 2 |  | biass | ⊢ ( ( ( 𝜑  ↔  𝜓 )  ↔  𝜒 )  ↔  ( 𝜑  ↔  ( 𝜓  ↔  𝜒 ) ) ) | 
						
							| 3 |  | xnor | ⊢ ( ( 𝜑  ↔  𝜓 )  ↔  ¬  ( 𝜑  ⊻  𝜓 ) ) | 
						
							| 4 | 3 | bibi1i | ⊢ ( ( ( 𝜑  ↔  𝜓 )  ↔  𝜒 )  ↔  ( ¬  ( 𝜑  ⊻  𝜓 )  ↔  𝜒 ) ) | 
						
							| 5 |  | xnor | ⊢ ( ( 𝜓  ↔  𝜒 )  ↔  ¬  ( 𝜓  ⊻  𝜒 ) ) | 
						
							| 6 | 5 | bibi2i | ⊢ ( ( 𝜑  ↔  ( 𝜓  ↔  𝜒 ) )  ↔  ( 𝜑  ↔  ¬  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 7 | 2 4 6 | 3bitr3i | ⊢ ( ( ¬  ( 𝜑  ⊻  𝜓 )  ↔  𝜒 )  ↔  ( 𝜑  ↔  ¬  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 8 |  | nbbn | ⊢ ( ( ¬  ( 𝜑  ⊻  𝜓 )  ↔  𝜒 )  ↔  ¬  ( ( 𝜑  ⊻  𝜓 )  ↔  𝜒 ) ) | 
						
							| 9 | 1 7 8 | 3bitr2ri | ⊢ ( ¬  ( ( 𝜑  ⊻  𝜓 )  ↔  𝜒 )  ↔  ¬  ( 𝜑  ↔  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 10 |  | df-xor | ⊢ ( ( ( 𝜑  ⊻  𝜓 )  ⊻  𝜒 )  ↔  ¬  ( ( 𝜑  ⊻  𝜓 )  ↔  𝜒 ) ) | 
						
							| 11 |  | df-xor | ⊢ ( ( 𝜑  ⊻  ( 𝜓  ⊻  𝜒 ) )  ↔  ¬  ( 𝜑  ↔  ( 𝜓  ⊻  𝜒 ) ) ) | 
						
							| 12 | 9 10 11 | 3bitr4i | ⊢ ( ( ( 𝜑  ⊻  𝜓 )  ⊻  𝜒 )  ↔  ( 𝜑  ⊻  ( 𝜓  ⊻  𝜒 ) ) ) |