Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xorneg1 | ⊢ ( ( ¬ 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xorcom | ⊢ ( ( ¬ 𝜑 ⊻ 𝜓 ) ↔ ( 𝜓 ⊻ ¬ 𝜑 ) ) | |
| 2 | xorneg2 | ⊢ ( ( 𝜓 ⊻ ¬ 𝜑 ) ↔ ¬ ( 𝜓 ⊻ 𝜑 ) ) | |
| 3 | xorcom | ⊢ ( ( 𝜓 ⊻ 𝜑 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) | |
| 4 | 2 3 | xchbinx | ⊢ ( ( 𝜓 ⊻ ¬ 𝜑 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) | 
| 5 | 1 4 | bitri | ⊢ ( ( ¬ 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) |