Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | xorneg1 | ⊢ ( ( ¬ 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xorcom | ⊢ ( ( ¬ 𝜑 ⊻ 𝜓 ) ↔ ( 𝜓 ⊻ ¬ 𝜑 ) ) | |
2 | xorneg2 | ⊢ ( ( 𝜓 ⊻ ¬ 𝜑 ) ↔ ¬ ( 𝜓 ⊻ 𝜑 ) ) | |
3 | xorcom | ⊢ ( ( 𝜓 ⊻ 𝜑 ) ↔ ( 𝜑 ⊻ 𝜓 ) ) | |
4 | 2 3 | xchbinx | ⊢ ( ( 𝜓 ⊻ ¬ 𝜑 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) |
5 | 1 4 | bitri | ⊢ ( ( ¬ 𝜑 ⊻ 𝜓 ) ↔ ¬ ( 𝜑 ⊻ 𝜓 ) ) |