Metamath Proof Explorer


Theorem xorneg1

Description: The connector \/_ is negated under negation of one argument. (Contributed by Mario Carneiro, 4-Sep-2016) (Proof shortened by Wolf Lammen, 27-Jun-2020)

Ref Expression
Assertion xorneg1 ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 xorcom ( ( ¬ 𝜑𝜓 ) ↔ ( 𝜓 ⊻ ¬ 𝜑 ) )
2 xorneg2 ( ( 𝜓 ⊻ ¬ 𝜑 ) ↔ ¬ ( 𝜓𝜑 ) )
3 xorcom ( ( 𝜓𝜑 ) ↔ ( 𝜑𝜓 ) )
4 2 3 xchbinx ( ( 𝜓 ⊻ ¬ 𝜑 ) ↔ ¬ ( 𝜑𝜓 ) )
5 1 4 bitri ( ( ¬ 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )