Step |
Hyp |
Ref |
Expression |
1 |
|
xov1plusxeqvd.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
2 |
|
xov1plusxeqvd.2 |
⊢ ( 𝜑 → 𝑋 ≠ - 1 ) |
3 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ+ ) |
4 |
3
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 𝑋 ∈ ℝ ) |
5 |
|
1rp |
⊢ 1 ∈ ℝ+ |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 1 ∈ ℝ+ ) |
7 |
6 3
|
rpaddcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 + 𝑋 ) ∈ ℝ+ ) |
8 |
4 7
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
9 |
7
|
rprecred |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
10 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 1 ∈ ℝ ) |
11 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 ∈ ℝ ) |
12 |
10 4
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 + 𝑋 ) ∈ ℝ ) |
13 |
10 3
|
ltaddrpd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 1 < ( 1 + 𝑋 ) ) |
14 |
|
recgt1i |
⊢ ( ( ( 1 + 𝑋 ) ∈ ℝ ∧ 1 < ( 1 + 𝑋 ) ) → ( 0 < ( 1 / ( 1 + 𝑋 ) ) ∧ ( 1 / ( 1 + 𝑋 ) ) < 1 ) ) |
15 |
12 13 14
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 0 < ( 1 / ( 1 + 𝑋 ) ) ∧ ( 1 / ( 1 + 𝑋 ) ) < 1 ) ) |
16 |
15
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 / ( 1 + 𝑋 ) ) < 1 ) |
17 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
18 |
16 17
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 / ( 1 + 𝑋 ) ) < ( 1 − 0 ) ) |
19 |
9 10 11 18
|
ltsub13d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 < ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
20 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
21 |
20 1
|
addcld |
⊢ ( 𝜑 → ( 1 + 𝑋 ) ∈ ℂ ) |
22 |
20
|
negcld |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
23 |
20 1 22 2
|
addneintrd |
⊢ ( 𝜑 → ( 1 + 𝑋 ) ≠ ( 1 + - 1 ) ) |
24 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( 1 + - 1 ) = 0 ) |
26 |
23 25
|
neeqtrd |
⊢ ( 𝜑 → ( 1 + 𝑋 ) ≠ 0 ) |
27 |
21 20 21 26
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 1 ) / ( 1 + 𝑋 ) ) = ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 1 / ( 1 + 𝑋 ) ) ) ) |
28 |
20 1
|
pncan2d |
⊢ ( 𝜑 → ( ( 1 + 𝑋 ) − 1 ) = 𝑋 ) |
29 |
28
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 1 ) / ( 1 + 𝑋 ) ) = ( 𝑋 / ( 1 + 𝑋 ) ) ) |
30 |
21 26
|
dividd |
⊢ ( 𝜑 → ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) = 1 ) |
31 |
30
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 1 / ( 1 + 𝑋 ) ) ) = ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
32 |
27 29 31
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑋 / ( 1 + 𝑋 ) ) = ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) = ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) ) |
34 |
19 33
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ) |
35 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
36 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → 0 < ( 1 / ( 1 + 𝑋 ) ) ) |
37 |
35 36
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 − 1 ) < ( 1 / ( 1 + 𝑋 ) ) ) |
38 |
10 10 9 37
|
ltsub23d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 1 − ( 1 / ( 1 + 𝑋 ) ) ) < 1 ) |
39 |
33 38
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) |
40 |
|
0xr |
⊢ 0 ∈ ℝ* |
41 |
|
1xr |
⊢ 1 ∈ ℝ* |
42 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ↔ ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ∧ 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ∧ ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) ) ) |
43 |
40 41 42
|
mp2an |
⊢ ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ↔ ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ∧ 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ∧ ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) ) |
44 |
8 34 39 43
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ℝ+ ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) |
45 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 1 + 𝑋 ) − 1 ) = 𝑋 ) |
46 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 𝑋 ) ∈ ℂ ) |
47 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 𝑋 ) ≠ 0 ) |
48 |
46 47
|
recrecd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) = ( 1 + 𝑋 ) ) |
49 |
21 1 21 26
|
divsubdird |
⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 𝑋 ) / ( 1 + 𝑋 ) ) = ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
50 |
20 1
|
pncand |
⊢ ( 𝜑 → ( ( 1 + 𝑋 ) − 𝑋 ) = 1 ) |
51 |
50
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) − 𝑋 ) / ( 1 + 𝑋 ) ) = ( 1 / ( 1 + 𝑋 ) ) ) |
52 |
30
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 + 𝑋 ) / ( 1 + 𝑋 ) ) − ( 𝑋 / ( 1 + 𝑋 ) ) ) = ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
53 |
49 51 52
|
3eqtr3d |
⊢ ( 𝜑 → ( 1 / ( 1 + 𝑋 ) ) = ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) = ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
55 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 1 ∈ ℝ ) |
56 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) |
57 |
56 43
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ∧ 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ∧ ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) ) |
58 |
57
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
59 |
55 58
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ∈ ℝ ) |
60 |
54 59
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) ∈ ℝ ) |
61 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 ∈ ℝ ) |
62 |
57
|
simp3d |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) < 1 ) |
63 |
62 17
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 𝑋 / ( 1 + 𝑋 ) ) < ( 1 − 0 ) ) |
64 |
58 55 61 63
|
ltsub13d |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) ) |
65 |
64 54
|
breqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < ( 1 / ( 1 + 𝑋 ) ) ) |
66 |
60 65
|
elrpd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) ∈ ℝ+ ) |
67 |
66
|
rprecred |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) ∈ ℝ ) |
68 |
48 67
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 𝑋 ) ∈ ℝ ) |
69 |
68 55
|
resubcld |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 1 + 𝑋 ) − 1 ) ∈ ℝ ) |
70 |
45 69
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 𝑋 ∈ ℝ ) |
71 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
72 |
57
|
simp2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < ( 𝑋 / ( 1 + 𝑋 ) ) ) |
73 |
35 72
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 − 1 ) < ( 𝑋 / ( 1 + 𝑋 ) ) ) |
74 |
55 55 58 73
|
ltsub23d |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 − ( 𝑋 / ( 1 + 𝑋 ) ) ) < 1 ) |
75 |
54 74
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 / ( 1 + 𝑋 ) ) < 1 ) |
76 |
66
|
reclt1d |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( ( 1 / ( 1 + 𝑋 ) ) < 1 ↔ 1 < ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) ) ) |
77 |
75 76
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 1 < ( 1 / ( 1 / ( 1 + 𝑋 ) ) ) ) |
78 |
77 48
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 1 < ( 1 + 𝑋 ) ) |
79 |
71 78
|
eqbrtrid |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 1 + 0 ) < ( 1 + 𝑋 ) ) |
80 |
61 70 55
|
ltadd2d |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → ( 0 < 𝑋 ↔ ( 1 + 0 ) < ( 1 + 𝑋 ) ) ) |
81 |
79 80
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 0 < 𝑋 ) |
82 |
70 81
|
elrpd |
⊢ ( ( 𝜑 ∧ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) → 𝑋 ∈ ℝ+ ) |
83 |
44 82
|
impbida |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ+ ↔ ( 𝑋 / ( 1 + 𝑋 ) ) ∈ ( 0 (,) 1 ) ) ) |