Metamath Proof Explorer
Description: Cartesian products with the singletons of ordinals 0 and 1 are disjoint.
(Contributed by NM, 2-Jun-2007)
|
|
Ref |
Expression |
|
Assertion |
xp01disj |
⊢ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐶 × { 1o } ) ) = ∅ |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1n0 |
⊢ 1o ≠ ∅ |
2 |
1
|
necomi |
⊢ ∅ ≠ 1o |
3 |
|
xpsndisj |
⊢ ( ∅ ≠ 1o → ( ( 𝐴 × { ∅ } ) ∩ ( 𝐶 × { 1o } ) ) = ∅ ) |
4 |
2 3
|
ax-mp |
⊢ ( ( 𝐴 × { ∅ } ) ∩ ( 𝐶 × { 1o } ) ) = ∅ |