| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpnz |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 2 |
|
anidm |
⊢ ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) ↔ ( 𝐴 × 𝐵 ) ≠ ∅ ) |
| 3 |
|
neeq1 |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ( 𝐶 × 𝐷 ) ≠ ∅ ) ) |
| 4 |
3
|
anbi2d |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐴 × 𝐵 ) ≠ ∅ ) ↔ ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐶 × 𝐷 ) ≠ ∅ ) ) ) |
| 5 |
2 4
|
bitr3id |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( 𝐴 × 𝐵 ) ≠ ∅ ↔ ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐶 × 𝐷 ) ≠ ∅ ) ) ) |
| 6 |
|
eqimss |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ) |
| 7 |
|
ssxpb |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) ⊆ ( 𝐶 × 𝐷 ) ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ) ) |
| 8 |
6 7
|
syl5ibcom |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ) ) |
| 9 |
|
eqimss2 |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( 𝐶 × 𝐷 ) ⊆ ( 𝐴 × 𝐵 ) ) |
| 10 |
|
ssxpb |
⊢ ( ( 𝐶 × 𝐷 ) ≠ ∅ → ( ( 𝐶 × 𝐷 ) ⊆ ( 𝐴 × 𝐵 ) ↔ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) ) ) |
| 11 |
9 10
|
syl5ibcom |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( 𝐶 × 𝐷 ) ≠ ∅ → ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) ) ) |
| 12 |
8 11
|
anim12d |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐶 × 𝐷 ) ≠ ∅ ) → ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) ) ) ) |
| 13 |
|
an4 |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) ) |
| 14 |
|
eqss |
⊢ ( 𝐴 = 𝐶 ↔ ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ) |
| 15 |
|
eqss |
⊢ ( 𝐵 = 𝐷 ↔ ( 𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) |
| 16 |
14 15
|
anbi12i |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ↔ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐵 ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵 ) ) ) |
| 17 |
13 16
|
bitr4i |
⊢ ( ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐷 ) ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵 ) ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) |
| 18 |
12 17
|
imbitrdi |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( ( 𝐴 × 𝐵 ) ≠ ∅ ∧ ( 𝐶 × 𝐷 ) ≠ ∅ ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 19 |
5 18
|
sylbid |
⊢ ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 20 |
19
|
com12 |
⊢ ( ( 𝐴 × 𝐵 ) ≠ ∅ → ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 21 |
1 20
|
sylbi |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) → ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |
| 22 |
|
xpeq12 |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) → ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) ) |
| 23 |
21 22
|
impbid1 |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 × 𝐵 ) = ( 𝐶 × 𝐷 ) ↔ ( 𝐴 = 𝐶 ∧ 𝐵 = 𝐷 ) ) ) |