Step |
Hyp |
Ref |
Expression |
1 |
|
peano2cn |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 + 1 ) ∈ ℂ ) |
2 |
1
|
halfcld |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 + 1 ) / 2 ) ∈ ℂ ) |
3 |
|
peano2cnm |
⊢ ( ( ( 𝑋 + 1 ) / 2 ) ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) ∈ ℂ ) |
4 |
2 3
|
syl |
⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) ∈ ℂ ) |
5 |
|
peano2cnm |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − 1 ) ∈ ℂ ) |
6 |
5
|
halfcld |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 − 1 ) / 2 ) ∈ ℂ ) |
7 |
|
2cnd |
⊢ ( 𝑋 ∈ ℂ → 2 ∈ ℂ ) |
8 |
|
2ne0 |
⊢ 2 ≠ 0 |
9 |
8
|
a1i |
⊢ ( 𝑋 ∈ ℂ → 2 ≠ 0 ) |
10 |
|
1cnd |
⊢ ( 𝑋 ∈ ℂ → 1 ∈ ℂ ) |
11 |
2 10 7
|
subdird |
⊢ ( 𝑋 ∈ ℂ → ( ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) · 2 ) = ( ( ( ( 𝑋 + 1 ) / 2 ) · 2 ) − ( 1 · 2 ) ) ) |
12 |
1 7 9
|
divcan1d |
⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) · 2 ) = ( 𝑋 + 1 ) ) |
13 |
7
|
mulid2d |
⊢ ( 𝑋 ∈ ℂ → ( 1 · 2 ) = 2 ) |
14 |
12 13
|
oveq12d |
⊢ ( 𝑋 ∈ ℂ → ( ( ( ( 𝑋 + 1 ) / 2 ) · 2 ) − ( 1 · 2 ) ) = ( ( 𝑋 + 1 ) − 2 ) ) |
15 |
5 7 9
|
divcan1d |
⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 − 1 ) / 2 ) · 2 ) = ( 𝑋 − 1 ) ) |
16 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
17 |
16
|
a1i |
⊢ ( 𝑋 ∈ ℂ → ( 2 − 1 ) = 1 ) |
18 |
17
|
oveq2d |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − ( 2 − 1 ) ) = ( 𝑋 − 1 ) ) |
19 |
|
id |
⊢ ( 𝑋 ∈ ℂ → 𝑋 ∈ ℂ ) |
20 |
19 7 10
|
subsub3d |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 − ( 2 − 1 ) ) = ( ( 𝑋 + 1 ) − 2 ) ) |
21 |
15 18 20
|
3eqtr2rd |
⊢ ( 𝑋 ∈ ℂ → ( ( 𝑋 + 1 ) − 2 ) = ( ( ( 𝑋 − 1 ) / 2 ) · 2 ) ) |
22 |
11 14 21
|
3eqtrd |
⊢ ( 𝑋 ∈ ℂ → ( ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) · 2 ) = ( ( ( 𝑋 − 1 ) / 2 ) · 2 ) ) |
23 |
4 6 7 9 22
|
mulcan2ad |
⊢ ( 𝑋 ∈ ℂ → ( ( ( 𝑋 + 1 ) / 2 ) − 1 ) = ( ( 𝑋 − 1 ) / 2 ) ) |