Metamath Proof Explorer


Theorem xp2

Description: Representation of Cartesian product based on ordered pair component functions. (Contributed by NM, 16-Sep-2006)

Ref Expression
Assertion xp2 ( 𝐴 × 𝐵 ) = { 𝑥 ∈ ( V × V ) ∣ ( ( 1st𝑥 ) ∈ 𝐴 ∧ ( 2nd𝑥 ) ∈ 𝐵 ) }

Proof

Step Hyp Ref Expression
1 elxp7 ( 𝑥 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐴 ∧ ( 2nd𝑥 ) ∈ 𝐵 ) ) )
2 1 abbi2i ( 𝐴 × 𝐵 ) = { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐴 ∧ ( 2nd𝑥 ) ∈ 𝐵 ) ) }
3 df-rab { 𝑥 ∈ ( V × V ) ∣ ( ( 1st𝑥 ) ∈ 𝐴 ∧ ( 2nd𝑥 ) ∈ 𝐵 ) } = { 𝑥 ∣ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st𝑥 ) ∈ 𝐴 ∧ ( 2nd𝑥 ) ∈ 𝐵 ) ) }
4 2 3 eqtr4i ( 𝐴 × 𝐵 ) = { 𝑥 ∈ ( V × V ) ∣ ( ( 1st𝑥 ) ∈ 𝐴 ∧ ( 2nd𝑥 ) ∈ 𝐵 ) }