Step |
Hyp |
Ref |
Expression |
1 |
|
elxp |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑏 ∃ 𝑐 ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) ) |
2 |
|
vex |
⊢ 𝑏 ∈ V |
3 |
|
vex |
⊢ 𝑐 ∈ V |
4 |
2 3
|
op2ndd |
⊢ ( 𝐴 = 〈 𝑏 , 𝑐 〉 → ( 2nd ‘ 𝐴 ) = 𝑐 ) |
5 |
4
|
eleq1d |
⊢ ( 𝐴 = 〈 𝑏 , 𝑐 〉 → ( ( 2nd ‘ 𝐴 ) ∈ 𝐶 ↔ 𝑐 ∈ 𝐶 ) ) |
6 |
5
|
biimpar |
⊢ ( ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ 𝑐 ∈ 𝐶 ) → ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) |
7 |
6
|
adantrl |
⊢ ( ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) |
8 |
7
|
exlimivv |
⊢ ( ∃ 𝑏 ∃ 𝑐 ( 𝐴 = 〈 𝑏 , 𝑐 〉 ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶 ) ) → ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) |
9 |
1 8
|
sylbi |
⊢ ( 𝐴 ∈ ( 𝐵 × 𝐶 ) → ( 2nd ‘ 𝐴 ) ∈ 𝐶 ) |