| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xp11 |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅ ) → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ↔ ( 𝐶 = 𝐶 ∧ 𝐴 = 𝐵 ) ) ) |
| 2 |
|
eqid |
⊢ 𝐶 = 𝐶 |
| 3 |
2
|
biantrur |
⊢ ( 𝐴 = 𝐵 ↔ ( 𝐶 = 𝐶 ∧ 𝐴 = 𝐵 ) ) |
| 4 |
1 3
|
bitr4di |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐴 ≠ ∅ ) → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 5 |
|
nne |
⊢ ( ¬ 𝐴 ≠ ∅ ↔ 𝐴 = ∅ ) |
| 6 |
|
simpr |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
| 7 |
|
xpeq2 |
⊢ ( 𝐴 = ∅ → ( 𝐶 × 𝐴 ) = ( 𝐶 × ∅ ) ) |
| 8 |
|
xp0 |
⊢ ( 𝐶 × ∅ ) = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ( 𝐶 × 𝐴 ) = ∅ ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ↔ ∅ = ( 𝐶 × 𝐵 ) ) ) |
| 11 |
|
eqcom |
⊢ ( ∅ = ( 𝐶 × 𝐵 ) ↔ ( 𝐶 × 𝐵 ) = ∅ ) |
| 12 |
10 11
|
bitrdi |
⊢ ( 𝐴 = ∅ → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ↔ ( 𝐶 × 𝐵 ) = ∅ ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐴 = ∅ ) → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ↔ ( 𝐶 × 𝐵 ) = ∅ ) ) |
| 14 |
|
df-ne |
⊢ ( 𝐶 ≠ ∅ ↔ ¬ 𝐶 = ∅ ) |
| 15 |
|
xpeq0 |
⊢ ( ( 𝐶 × 𝐵 ) = ∅ ↔ ( 𝐶 = ∅ ∨ 𝐵 = ∅ ) ) |
| 16 |
|
orel1 |
⊢ ( ¬ 𝐶 = ∅ → ( ( 𝐶 = ∅ ∨ 𝐵 = ∅ ) → 𝐵 = ∅ ) ) |
| 17 |
15 16
|
biimtrid |
⊢ ( ¬ 𝐶 = ∅ → ( ( 𝐶 × 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
| 18 |
14 17
|
sylbi |
⊢ ( 𝐶 ≠ ∅ → ( ( 𝐶 × 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐴 = ∅ ) → ( ( 𝐶 × 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
| 20 |
13 19
|
sylbid |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐴 = ∅ ) → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) → 𝐵 = ∅ ) ) |
| 21 |
|
eqtr3 |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → 𝐴 = 𝐵 ) |
| 22 |
6 20 21
|
syl6an |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐴 = ∅ ) → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 23 |
5 22
|
sylan2b |
⊢ ( ( 𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅ ) → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 24 |
|
xpeq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ) |
| 25 |
23 24
|
impbid1 |
⊢ ( ( 𝐶 ≠ ∅ ∧ ¬ 𝐴 ≠ ∅ ) → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| 26 |
4 25
|
pm2.61dan |
⊢ ( 𝐶 ≠ ∅ → ( ( 𝐶 × 𝐴 ) = ( 𝐶 × 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |