Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) |
2 |
1
|
biimpi |
⊢ ( 𝐵 ≠ ∅ → ∃ 𝑦 𝑦 ∈ 𝐵 ) |
3 |
2
|
biantrurd |
⊢ ( 𝐵 ≠ ∅ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ↔ ( ∃ 𝑦 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) ) |
4 |
|
ancom |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
5 |
4
|
anbi1i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ) |
6 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
7 |
|
brxp |
⊢ ( 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) |
8 |
6 7
|
anbi12i |
⊢ ( ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ) |
9 |
|
anandi |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶 ) ) ) |
10 |
5 8 9
|
3bitr4i |
⊢ ( ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) |
12 |
|
19.41v |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ↔ ( ∃ 𝑦 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) |
13 |
11 12
|
bitr2i |
⊢ ( ( ∃ 𝑦 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ↔ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ) ) |
14 |
3 13
|
bitr2di |
⊢ ( 𝐵 ≠ ∅ → ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) ) ) |
15 |
14
|
opabbidv |
⊢ ( 𝐵 ≠ ∅ → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ) } = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) } ) |
16 |
|
df-co |
⊢ ( ( 𝐵 × 𝐶 ) ∘ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐵 × 𝐶 ) 𝑧 ) } |
17 |
|
df-xp |
⊢ ( 𝐴 × 𝐶 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) } |
18 |
15 16 17
|
3eqtr4g |
⊢ ( 𝐵 ≠ ∅ → ( ( 𝐵 × 𝐶 ) ∘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐶 ) ) |