Step |
Hyp |
Ref |
Expression |
1 |
|
xpcogend.1 |
⊢ ( 𝜑 → ( 𝐵 ∩ 𝐶 ) ≠ ∅ ) |
2 |
|
brxp |
⊢ ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
3 |
|
brxp |
⊢ ( 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) |
4 |
3
|
biancomi |
⊢ ( 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ↔ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) |
5 |
2 4
|
anbi12i |
⊢ ( ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ) |
6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ) |
7 |
|
an4 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
8 |
7
|
exbii |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
9 |
|
19.42v |
⊢ ( ∃ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
10 |
6 8 9
|
3bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) |
11 |
|
ndisj |
⊢ ( ( 𝐵 ∩ 𝐶 ) ≠ ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
12 |
1 11
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
13 |
12
|
biantrud |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) ) ) |
14 |
10 13
|
bitr4id |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) ) ) |
15 |
14
|
opabbidv |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) } = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) } ) |
16 |
|
df-co |
⊢ ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = { 〈 𝑥 , 𝑧 〉 ∣ ∃ 𝑦 ( 𝑥 ( 𝐴 × 𝐵 ) 𝑦 ∧ 𝑦 ( 𝐶 × 𝐷 ) 𝑧 ) } |
17 |
|
df-xp |
⊢ ( 𝐴 × 𝐷 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐷 ) } |
18 |
15 16 17
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝐶 × 𝐷 ) ∘ ( 𝐴 × 𝐵 ) ) = ( 𝐴 × 𝐷 ) ) |